
Aerospace Toolbox 2
User’s Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Toolbox User’s Guide

© COPYRIGHT 2006–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2006 Online only New for Version 1.0 (Release 2006b)
March 2007 Online only Revised for Version 1.1 (Release 2007a)
September 2007 First printing Revised for Version 2.0 (Release 2007b)
March 2008 Online only Revised for Version 2.1 (Release 2008a)
October 2008 Online only Revised for Version 2.2 (Release 2008b)
March 2009 Online only Revised for Version 2.3 (Release 2009a)
September 2009 Online only Revised for Version 2.4 (Release 2009b)
March 2010 Online only Revised for Version 2.5 (Release 2010a)
September 2010 Online only Revised for Version 2.6 (Release 2010b)

Contents

Getting Started

1
Product Overview . 1-2

Related Products . 1-4

Getting Online Help . 1-5
Exploring the Toolbox . 1-5
Using the MATLAB Help System for Documentation and
Demos . 1-5

Using Aerospace Toolbox

2
Defining Coordinate Systems . 2-2
Fundamental Coordinate System Concepts 2-2
Coordinate Systems for Modeling . 2-4
Coordinate Systems for Navigation 2-7
Coordinate Systems for Display . 2-10
References . 2-11

Defining Aerospace Units . 2-12

Importing Digital DATCOM Data 2-14
Overview . 2-14
Example of a USAF Digital DATCOM File 2-14
Importing Data from DATCOM Files 2-15
Examining Imported DATCOM Data 2-15
Filling in Missing DATCOM Data . 2-17
Plotting Aerodynamic Coefficients . 2-22

3-D Flight Data Playback . 2-26

v

Aerospace Toolbox Animation Objects 2-26
Using Aero.Animation Objects . 2-26
Using Aero.VirtualRealityAnimation Objects 2-35
Using Aero.FlightGearAnimation Objects 2-48

Function Reference

3
Animation Objects . 3-3

Body Objects . 3-4

Camera Objects . 3-5

FlightGear Objects . 3-5

Geometry Objects . 3-6

Node Objects . 3-7

Viewpoint Objects . 3-8

Virtual Reality Objects . 3-9

Axes Transformations . 3-10

Environment . 3-11

File Reading . 3-12

Flight Parameters . 3-12

Gas Dynamics . 3-12

vi Contents

Quaternion Math . 3-13

Time . 3-13

Unit Conversion . 3-13

Alphabetical List

4

AC3D Files and Thumbnails

A
Overview . A-2

Index

vii

viii Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Related Products” on page 1-4

• “Getting Online Help” on page 1-5

1 Getting Started

Product Overview
The Aerospace Toolbox product extends the MATLAB® technical computing
environment by providing reference standards, environment models, and
aerodynamic coefficient importing for performing advanced aerospace analysis
to develop and evaluate your designs. The toolbox provides the following to
enable you to visualize flight data in a three-dimensional environment and
reconstruct behavioral anomalies in flight-test results:

• Aero.Animation, Aero.Body, Aero.Camera, and Aero.Geometry objects and
associated methods

• An interface to the FlightGear flight simulator

• An interface to the Simulink® 3D Animation™ software

To ensure design consistency, the Aerospace Toolbox software provides
utilities for unit conversions, coordinate transformations, and quaternion
math, as well as standards-based environmental models for the atmosphere,
gravity, and magnetic fields. You can import aerodynamic coefficients directly
from the U.S. Air Force Digital Data Compendium (DATCOM) to carry out
preliminary control design and vehicle performance analysis.

The toolbox provides you with the following main features:

• Provides standards-based environmental models for atmosphere, gravity,
and magnetic fields.

• Converts units and transforms coordinate systems and spatial
representations.

• Implements predefined utilities for aerospace parameter calculations, time
calculations, and quaternion math.

• Imports aerodynamic coefficients directly from DATCOM.

• Interfaces to the FlightGear flight simulator, enabling visualization of
vehicle dynamics in a three-dimensional environment.

1-2

Product Overview

The Aerospace Toolbox functions can be used in applications such as aircraft
technology, telemetry data reduction, flight control analysis, navigation
analysis, visualization for flight simulation, and environmental modeling, and
can help you perform the following tasks:

• Analyze, initialize, and visualize a broad range of large aerospace system
architectures, including aircraft, missiles, spacecraft (probes, satellites,
manned and unmanned), and propulsion systems (engines and rockets),
while reducing development time.

• Support and define new requirements for aerospace systems.

• Perform complex calculations and analyze data to optimize and implement
your designs.

• Test the performance of flight tests.

The Aerospace Toolbox software maintains and updates the algorithms,
tables, and standard environmental models, eliminating the need to provide
internal maintenance and verification of the models and reducing the cost of
internal software maintenance.

1-3

1 Getting Started

Related Products
The Aerospace Toolbox software requires the MATLAB software.

In addition to Aerospace Toolbox, the Aerospace product family includes
the Aerospace Blockset product. The toolbox provides static data analysis
capabilities, while blockset provides an environment for dynamic modeling
and vehicle component modeling and simulation. The Aerospace Blockset™
software uses part of the functionality of the toolbox as an engine. Use these
products together to model aerospace systems in the MATLAB and Simulink®

environments.

Other related products are listed in the Aerospace Toolbox product page at
the MathWorks Web site. They include toolboxes and blocksets that extend
the capabilities of the MATLAB and Simulink products. These products will
enhance your use of the toolbox in various applications.

For more information about any MathWorks® software products, see either

• The online documentation for that product if it is installed

• The MathWorks Web site at www.mathworks.com

1-4

http://www.mathworks.com/products/aerotb/
http://www.mathworks.com

Getting Online Help

Getting Online Help

In this section...

“Exploring the Toolbox” on page 1-5

“Using the MATLAB Help System for Documentation and Demos” on page
1-5

Exploring the Toolbox
A list of the toolbox functions is available to you by typing

help aero

You can view the code for any function by typing

type function_name

Using the MATLAB Help System for Documentation
and Demos
The MATLAB Help browser allows you to access the documentation and demo
models for all the MATLAB and Simulink based products that you have
installed. The online Help includes an online search system.

Consult the Help for Using MATLAB section of the MATLAB Desktop Tools
and Development Environment documentation for more information about
the MATLAB Help system.

1-5

1 Getting Started

1-6

2

Using Aerospace Toolbox

• “Defining Coordinate Systems” on page 2-2

• “Defining Aerospace Units” on page 2-12

• “Importing Digital DATCOM Data” on page 2-14

• “3-D Flight Data Playback” on page 2-26

2 Using Aerospace Toolbox

Defining Coordinate Systems

In this section...

“Fundamental Coordinate System Concepts” on page 2-2

“Coordinate Systems for Modeling” on page 2-4

“Coordinate Systems for Navigation” on page 2-7

“Coordinate Systems for Display” on page 2-10

“References” on page 2-11

Fundamental Coordinate System Concepts
Coordinate systems allow you to keep track of an aircraft or spacecraft’s
position and orientation in space. The Aerospace Toolbox coordinate systems
are based on these underlying concepts from geodesy, astronomy, and physics.

Definitions
The Aerospace Toolbox software uses right-handed (RH) Cartesian coordinate
systems. The right-hand rule establishes the x-y-z sequence of coordinate
axes.

An inertial frame is a nonaccelerating motion reference frame. Loosely
speaking, acceleration is defined with respect to the distant cosmos. In an
inertial frame, Newton’s second law (force = mass X acceleration) holds.

Strictly defined, an inertial frame is a member of the set of all frames not
accelerating relative to one another. A noninertial frame is any frame
accelerating relative to an inertial frame. Its acceleration, in general, includes
both translational and rotational components, resulting in pseudoforces
(pseudogravity, as well as Coriolis and centrifugal forces).

The toolbox models the Earth’s shape (the geoid) as an oblate spheroid, a
special type of ellipsoid with two longer axes equal (defining the equatorial
plane) and a third, slightly shorter (geopolar) axis of symmetry. The equator
is the intersection of the equatorial plane and the Earth’s surface. The
geographic poles are the intersection of the Earth’s surface and the geopolar
axis. In general, the Earth’s geopolar and rotation axes are not identical.

2-2

Defining Coordinate Systems

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The
zero longitude or prime meridian passes through Greenwich, England.

Approximations
The Aerospace Toolbox software makes three standard approximations in
defining coordinate systems relative to the Earth.

• The Earth’s surface or geoid is an oblate spheroid, defined by its longer
equatorial and shorter geopolar axes. In reality, the Earth is slightly
deformed with respect to the standard geoid.

• The Earth’s rotation axis and equatorial plane are perpendicular, so that
the rotation and geopolar axes are identical. In reality, these axes are
slightly misaligned, and the equatorial plane wobbles as the Earth rotates.
This effect is negligible in most applications.

• The only noninertial effect in Earth-fixed coordinates is due to the Earth’s
rotation about its axis. This is a rotating, geocentric system. The toolbox
ignores the Earth’s motion around the Sun, the Sun’s motion in the Galaxy,
and the Galaxy’s motion through cosmos. In most applications, only the
Earth’s rotation matters.

This approximation must be changed for spacecraft sent into deep space,
i.e., outside the Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets
The Aerospace Toolbox software uses the standard WGS-84 geoid to model
the Earth. You can change the equatorial axis length, the flattening, and
the rotation rate.

You can represent the motion of spacecraft with respect to any celestial body
that is well approximated by an oblate spheroid by changing the spheroid
size, flattening, and rotation rate. If the celestial body is rotating westward
(retrogradely), make the rotation rate negative.

2-3

2 Using Aerospace Toolbox

Coordinate Systems for Modeling
Modeling aircraft and spacecraft is simplest if you use a coordinate system
fixed in the body itself. In the case of aircraft, the forward direction is
modified by the presence of wind, and the craft’s motion through the air is
not the same as its motion relative to the ground.

Body Coordinates
The noninertial body coordinate system is fixed in both origin and orientation
to the moving craft. The craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

• The x-axis points through the nose of the craft.

• The y-axis points to the right of the x-axis (facing in the pilot’s direction of
view), perpendicular to the x-axis.

• The z-axis points down through the bottom of the craft, perpendicular to
the x-y plane and satisfying the RH rule.

Translational Degrees of Freedom. Translations are defined by moving
along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles
P, Q, R or Φ, Θ, Ψ. They are

• P or Φ: Roll about the x-axis

• Q or Θ: Pitch about the y-axis

• R or Ψ: Yaw about the z-axis

2-4

Defining Coordinate Systems

Wind Coordinates
The noninertial wind coordinate system has its origin fixed in the rigid
aircraft. The coordinate system orientation is defined relative to the craft’s
velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.

• The x-axis points in the direction of V.

• The y-axis points to the right of the x-axis (facing in the direction of V),
perpendicular to the x-axis.

• The z-axis points perpendicular to the x-y plane in whatever way needed to
satisfy the RH rule with respect to the x- and y-axes.

Translational Degrees of Freedom. Translations are defined by moving
along these axes by distances x, y, and z from the origin.

2-5

2 Using Aerospace Toolbox

Rotational Degrees of Freedom. Rotations are defined by the Euler
angles Φ, γ, χ. They are

• Φ: Bank angle about the x-axis

• γ: Flight path about the y-axis

• χ: Heading angle about the z-axis

2-6

Defining Coordinate Systems

Coordinate Systems for Navigation
Modeling aerospace trajectories requires positioning and orienting the aircraft
or spacecraft with respect to the rotating Earth. Navigation coordinates are
defined with respect to the center and surface of the Earth.

Geocentric and Geodetic Latitudes
The geocentric latitude λ on the Earth’s surface is defined by the angle
subtended by the radius vector from the Earth’s center to the surface point
with the equatorial plane.

The geodetic latitude μ on the Earth’s surface is defined by the angle
subtended by the surface normal vector n and the equatorial plane.

2-7

2 Using Aerospace Toolbox

NED Coordinates
The north-east-down (NED) system is a noninertial system with its origin
fixed at the aircraft or spacecraft’s center of gravity. Its axes are oriented
along the geodetic directions defined by the Earth’s surface.

• The x-axis points north parallel to the geoid surface, in the polar direction.

• The y-axis points east parallel to the geoid surface, along a latitude curve.

• The z-axis points downward, toward the Earth’s surface, antiparallel to the
surface’s outward normal n.

Flying at a constant altitude means flying at a constant z above the Earth’s
surface.

2-8

Defining Coordinate Systems

ECI Coordinates
The Earth-centered inertial (ECI) system is a mixed inertial system. It is
oriented with respect to the Sun. Its origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward in the Earth’s equatorial plane exactly at the
Sun. (This rule ignores the Sun’s oblique angle to the equator, which varies
with season. The actual Sun always remains in the x-z plane.)

• The y-axis points into the eastward quadrant, perpendicular to the x-z
plane so as to satisfy the RH rule.

Earth-Centered Coordinates

2-9

2 Using Aerospace Toolbox

ECEF Coordinates
The Earth-center, Earth-fixed (ECEF) system is a noninertial system that
rotates with the Earth. Its origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward along the intersection of the Earth’s equatorial
plane and prime meridian.

• The y-axis points into the eastward quadrant, perpendicular to the x-z
plane so as to satisfy the RH rule.

Coordinate Systems for Display
The Aerospace Toolbox software lets you use FlightGear coordinates for
rendering motion.

FlightGear is an open-source, third-party flight simulator with an interface
supported by the Aerospace Toolbox product.

• “Working with the Flight Simulator Interface” on page 2-53 discusses the
toolbox interface to FlightGear.

• See the FlightGear documentation at www.flightgear.org for complete
information about this flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the
standard body coordinate system about the y-axis by -180 degrees:

• The x-axis is positive toward the back of the vehicle.

• The y-axis is positive toward the right of the vehicle.

• The z-axis is positive upward, e.g., wheels typically have the lowest z
values.

2-10

http://www.flightgear.org

Defining Coordinate Systems

References
Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate
Systems, R-004-1992, ANSI/AIAA, February 1992.

Mapping Toolbox User’s Guide, The MathWorks, Inc., Natick, Massachusetts.
www.mathworks.com/access/helpdesk/help/toolbox/map/.

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA,
Reston, Virginia, 2000.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, 2nd ed.,
Wiley-Interscience, New York, 2003.

Thomson, W. T., Introduction to Space Dynamics, John Wiley & Sons, New
York, 1961/Dover Publications, Mineola, New York, 1986.

World Geodetic System 1984 (WGS 84),
http://earth-info.nga.mil/GandG/wgs84.

2-11

http://www.mathworks.com/access/helpdesk/help/toolbox/map/
http://earth-info.nga.mil/GandG/wgs84

2 Using Aerospace Toolbox

Defining Aerospace Units
The Aerospace Toolbox functions support standard measurement systems.
The Unit Conversion functions provide means for converting common
measurement units from one system to another, such as converting velocity
from feet per second to meters per second and vice versa.

The unit conversion functions support all units listed in this table.

Quantity MKS (SI) English

Acceleration meters/second2 (m/s2),
kilometers/second2

(km/s2),
(kilometers/hour)/second
(km/h-s), g-unit (g)

inches/second2 (in/s2),
feet/second2 (ft/s2),
(miles/hour)/second
(mph/s), g-unit (g)

Angle radian (rad), degree
(deg), revolution

radian (rad), degree
(deg), revolution

Angular acceleration radians/second2 (rad/s2),
degrees/second2 (deg/s2)

radians/second2 (rad/s2),
degrees/second2 (deg/s2)

Angular velocity radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute
(rpm),
revolutions/second (rps)

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute
(rpm), revolutions/second
(rps)

Density kilogram/meter3 (kg/m3) pound mass/foot3

(lbm/ft3), slug/foot3

(slug/ft3), pound
mass/inch3 (lbm/in3)

Force newton (N) pound (lb)

Inertia kilogram-meter2 (kg-m2) slug-foot2 (slug-ft2)

Length meter (m) inch (in), foot (ft), mile
(mi), nautical mile (nm)

Mass kilogram (kg) slug (slug), pound mass
(lbm)

2-12

Defining Aerospace Units

Quantity MKS (SI) English

Pressure pascal (Pa) pound/inch2 (psi),
pound/foot2 (psf),
atmosphere (atm)

Temperature kelvin (K), degrees
Celsius (oC)

degrees Fahrenheit (oF),
degrees Rankine (oR)

Torque newton-meter (N-m) pound-feet (lb-ft)

Velocity meters/second (m/s),
kilometers/second
(km/s), kilometers/hour
(km/h)

inches/second (in/sec),
feet/second (ft/sec),
feet/minute (ft/min),
miles/hour (mph), knots

2-13

2 Using Aerospace Toolbox

Importing Digital DATCOM Data

In this section...

“Overview” on page 2-14

“Example of a USAF Digital DATCOM File” on page 2-14

“Importing Data from DATCOM Files” on page 2-15

“Examining Imported DATCOM Data” on page 2-15

“Filling in Missing DATCOM Data” on page 2-17

“Plotting Aerodynamic Coefficients” on page 2-22

Overview
The Aerospace Toolbox product enables bringing United States Air Force
(USAF) Digital DATCOM files into the MATLAB environment by using
the datcomimport function. For more information, see the datcomimport
function reference page. This section explains how to import data from a
USAF Digital DATCOM file.

The example used in the following topics is available as an Aerospace Toolbox
demo. You can run the demo either by entering astimportddatcom in the
MATLAB Command Window or by finding the demo entry (Importing from
USAF Digital DATCOM Files) in the MATLAB Online Help and clicking Run
in the Command Window on its demo page.

Example of a USAF Digital DATCOM File
The following is a sample input file for USAF Digital DATCOM for a
wing-body-horizontal tail-vertical tail configuration running over five alphas,
two Mach numbers, and two altitudes and calculating static and dynamic
derivatives. You can also view this file by entering type astdatcom.in in the
MATLAB Command Window.

$FLTCON NMACH=2.0,MACH(1)=0.1,0.2$

$FLTCON NALT=2.0,ALT(1)=5000.0,8000.0$

$FLTCON NALPHA=5.,ALSCHD(1)=-2.0,0.0,2.0,

ALSCHD(4)=4.0,8.0,LOOP=2.0$

$OPTINS SREF=225.8,CBARR=5.75,BLREF=41.15$

2-14

Importing Digital DATCOM Data

$SYNTHS XCG=7.08,ZCG=0.0,XW=6.1,ZW=-1.4,ALIW=1.1,XH=20.2,

ZH=0.4,ALIH=0.0,XV=21.3,ZV=0.0,VERTUP=.TRUE.$

$BODY NX=10.0,

X(1)=-4.9,0.0,3.0,6.1,9.1,13.3,20.2,23.5,25.9,

R(1)=0.0,1.0,1.75,2.6,2.6,2.6,2.0,1.0,0.0$

$WGPLNF CHRDTP=4.0,SSPNE=18.7,SSPN=20.6,CHRDR=7.2,SAVSI=0.0,CHSTAT=0.25,

TWISTA=-1.1,SSPNDD=0.0,DHDADI=3.0,DHDADO=3.0,TYPE=1.0$

NACA-W-6-64A412

$HTPLNF CHRDTP=2.3,SSPNE=5.7,SSPN=6.625,CHRDR=0.25,SAVSI=11.0,

CHSTAT=1.0,TWISTA=0.0,TYPE=1.0$

NACA-H-4-0012

$VTPLNF CHRDTP=2.7,SSPNE=5.0,SSPN=5.2,CHRDR=5.3,SAVSI=31.3,

CHSTAT=0.25,TWISTA=0.0,TYPE=1.0$

NACA-V-4-0012

CASEID SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG

DAMP

NEXT CASE

The output file generated by USAF Digital DATCOM for the same
wing-body-horizontal tail-vertical tail configuration running over five alphas,
two Mach numbers, and two altitudes can be viewed by entering type
astdatcom.out in the MATLAB Command Window.

Importing Data from DATCOM Files
Use the datcomimport function to bring the Digital DATCOM data into the
MATLAB environment.

alldata = datcomimport('astdatcom.out', true, 0);

Examining Imported DATCOM Data
The datcomimport function creates a cell array of structures containing the
data from the Digital DATCOM output file.

data = alldata{1}

data =

case: 'SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG'

mach: [0.1000 0.2000]

alt: [5000 8000]

2-15

2 Using Aerospace Toolbox

alpha: [-2 0 2 4 8]

nmach: 2

nalt: 2

nalpha: 5

rnnub: []

hypers: 0

loop: 2

sref: 225.8000

cbar: 5.7500

blref: 41.1500

dim: 'ft'

deriv: 'deg'

stmach: 0.6000

tsmach: 1.4000

save: 0

stype: []

trim: 0

damp: 1

build: 1

part: 0

highsym: 0

highasy: 0

highcon: 0

tjet: 0

hypeff: 0

lb: 0

pwr: 0

grnd: 0

wsspn: 18.7000

hsspn: 5.7000

ndelta: 0

delta: []

deltal: []

deltar: []

ngh: 0

grndht: []

config: [1x1 struct]

cd: [5x2x2 double]

cl: [5x2x2 double]

cm: [5x2x2 double]

2-16

Importing Digital DATCOM Data

cn: [5x2x2 double]

ca: [5x2x2 double]

xcp: [5x2x2 double]

cla: [5x2x2 double]

cma: [5x2x2 double]

cyb: [5x2x2 double]

cnb: [5x2x2 double]

clb: [5x2x2 double]

qqinf: [5x2x2 double]

eps: [5x2x2 double]

depsdalp: [5x2x2 double]

clq: [5x2x2 double]

cmq: [5x2x2 double]

clad: [5x2x2 double]

cmad: [5x2x2 double]

clp: [5x2x2 double]

cyp: [5x2x2 double]

cnp: [5x2x2 double]

cnr: [5x2x2 double]

clr: [5x2x2 double]

Filling in Missing DATCOM Data
By default, missing data points are set to 99999 and data points are set to
NaN where no DATCOM methods exist or where the method is not applicable.

It can be seen in the Digital DATCOM output file and examining the imported

data that CYβ , Cnβ , Clq , and Cmq have data only in the first alpha value.
Here are the imported data values.

data.cyb

ans(:,:,1) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

2-17

2 Using Aerospace Toolbox

ans(:,:,2) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

data.cnb

ans(:,:,1) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

ans(:,:,2) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

data.clq

ans(:,:,1) =

1.0e+004 *

0.0000 0.0000

2-18

Importing Digital DATCOM Data

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

ans(:,:,2) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

data.cmq

ans(:,:,1) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

ans(:,:,2) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

The missing data points will be filled with the values for the first alpha, since
these data points are meant to be used for all alpha values.

2-19

2 Using Aerospace Toolbox

aerotab = {'cyb' 'cnb' 'clq' 'cmq'};

for k = 1:length(aerotab)

for m = 1:data.nmach

for h = 1:data.nalt

data.(aerotab{k})(:,m,h) = data.(aerotab{k})(1,m,h);

end

end

end

Here are the updated imported data values.

data.cyb

ans(:,:,1) =

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

ans(:,:,2) =

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

data.cnb

ans(:,:,1) =

1.0e-003 *

0.9142 0.8781

0.9142 0.8781

0.9142 0.8781

0.9142 0.8781

0.9142 0.8781

2-20

Importing Digital DATCOM Data

ans(:,:,2) =

1.0e-003 *

0.9190 0.8829

0.9190 0.8829

0.9190 0.8829

0.9190 0.8829

0.9190 0.8829

data.clq

ans(:,:,1) =

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

ans(:,:,2) =

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

data.cmq

ans(:,:,1) =

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

2-21

2 Using Aerospace Toolbox

ans(:,:,2) =

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

Plotting Aerodynamic Coefficients
You can now plot the aerodynamic coefficients:

• “Plotting Lift Curve Moments” on page 2-22

• “Plotting Drag Polar Moments” on page 2-23

• “Plotting Pitching Moments” on page 2-24

Plotting Lift Curve Moments

h1 = figure;

figtitle = {'Lift Curve' ''};

for k=1:2

subplot(2,1,k)

plot(data.alpha,permute(data.cl(:,k,:),[1 3 2]))

grid

ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])

title(figtitle{k});

end

xlabel('Angle of Attack (deg)')

2-22

Importing Digital DATCOM Data

Plotting Drag Polar Moments

h2 = figure;

figtitle = {'Drag Polar' ''};

for k=1:2

subplot(2,1,k)

plot(permute(data.cd(:,k,:),[1 3 2]),permute(data.cl(:,k,:),[1 3 2]))

grid

ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])

title(figtitle{k})

end

xlabel('Drag Coefficient')

2-23

2 Using Aerospace Toolbox

Plotting Pitching Moments

h3 = figure;

figtitle = {'Pitching Moment' ''};

for k=1:2

subplot(2,1,k)

plot(permute(data.cm(:,k,:),[1 3 2]),permute(data.cl(:,k,:),[1 3 2]))

grid

ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])

title(figtitle{k})

end

xlabel('Pitching Moment Coefficient')

2-24

Importing Digital DATCOM Data

2-25

2 Using Aerospace Toolbox

3-D Flight Data Playback

In this section...

“Aerospace Toolbox Animation Objects” on page 2-26

“Using Aero.Animation Objects” on page 2-26

“Using Aero.VirtualRealityAnimation Objects” on page 2-35

“Using Aero.FlightGearAnimation Objects” on page 2-48

Aerospace Toolbox Animation Objects
To visualize flight data in the Aerospace Toolbox environment, you can
use the following animation objects and their associated methods. These
animation objects use the MATLAB time series object, timeseries to
visualize flight data.

• Aero.Animation — You can use this animation object to visualize flight
data without any other tool or toolbox. The following objects support this
object.

- Aero.Body

- Aero.Camera

- Aero.Geometry

• Aero.VirtualRealityAnimation — You can use this animation object
to visualize flight data with the Simulink 3D Animation product. The
following objects support this object.

- Aero.Node

- Aero.Viewpoint

• Aero.FlightGearAnimation

You can use this animation object to visualize flight data with the
FlightGear simulator.

Using Aero.Animation Objects
The toolbox interface to animation objects uses the Handle Graphics® product.
The demo, Overlaying Simulated and Actual Flight Data (astmlanim), visually

2-26

3-D Flight Data Playback

compares simulated and actual flight trajectory data. It does this by creating
animation objects, creating bodies for those objects, and loading the flight
trajectory data. This section describes what happens when the demo runs.

1 Create and configure an animation object.

a Configure the animation object.

b Create and load bodies for that object.

2 Load recorded data for flight trajectories.

3 Display body geometries in a figure window.

4 Play back flight trajectories using the animation object.

5 Manipulate the camera.

6 Manipulate bodies, as follows:

a Move and reposition bodies.

b Create a transparency in the first body.

c Change the color of the second body.

d Turn off the landing gear of the second body.

Running the Demo

1 Start the MATLAB software.

2 Run the demo either by entering astmlanim in the MATLAB Command
Window or by finding the demo entry (Overlaying Simulated and Actual
Flight Data) in the MATLAB Online Help and clicking Run in the
Command Window on its demo page.

While running, the demo performs several steps by issuing a series of
commands, as explained below.

Creating and Configuring an Animation Object
This series of commands creates an animation object and configures the object.

2-27

2 Using Aerospace Toolbox

1 Create an animation object.

h = Aero.Animation;

2 Configure the animation object to set the number of frames per second
(FramesPerSecond) property. This controls the rate at which frames are
displayed in the figure window.

h.FramesPerSecond = 10;

3 Configure the animation object to set the seconds of animation data per
second time scaling (TimeScaling) property.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling property determine
the time step of the simulation. The settings in this demo result in a time
step of approximately 0.5 s.

4 Create and load bodies for the animation object. The demo will use these
bodies to work with and display the simulated and actual flight trajectories.
The first body is orange; it represents simulated data. The second body is
blue; it represents the actual flight data.

idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
idx2 = h.createBody('pa24-250_blue.ac','Ac3d');

Both bodies are AC3D format files. AC3D is one of several file formats that
the animation objects support. FlightGear uses the same file format. The
animation object reads in the bodies in the AC3D format and stores them
as patches in the geometry object within the animation object.

Loading Recorded Data for Flight Trajectories
This series of commands loads the recorded flight trajectory data, which is
contained in files in the matlabroot\toolbox\aero\astdemos folder.

• simdata – Contains simulated flight trajectory data, which is set up as a
6DoF array.

• fltdata – Contains actual flight trajectory data, which is set up in a
custom format. To access this custom format data, the demo needs to

2-28

3-D Flight Data Playback

set the body object TimeSeriesSourceType parameter to Custom, then
specify a custom read function.

1 Load the flight trajectory data.

load simdata
load fltdata

2 Set the time series data for the two bodies.

h.Bodies{1}.TimeSeriesSource = simdata;
h.Bodies{2}.TimeSeriesSource = fltdata;

3 Identify the time series for the second body as custom.

h.Bodies{2}.TimeSeriesSourceType = 'Custom';

4 Specify the custom read function to access the data in fltdata for
the second body. The demo provides the custom read function in
matlabroot\toolbox\aero\astdemos\CustomReadBodyTSData.m.

h.Bodies{2}.TimeseriesReadFcn = @CustomReadBodyTSData;

Displaying Body Geometries in a Figure Window
This command creates a figure object for the animation object.

h.show();

Playing Back Flight Trajectories Using the Animation Object
This command plays the animation bodies for the duration of the time series
data. This illustrates the differences between the simulated and actual flight
data.

h.play();

2-29

2 Using Aerospace Toolbox

Manipulating the Camera
This command series describes how you can manipulate the camera on the two
bodies, and redisplay the animation. The PositionFcn property of a camera
object controls the camera position relative to the bodies in the animation. In
the section “Playing Back Flight Trajectories Using the Animation Object”
on page 2-29, the camera object uses a default value for the PositionFcn
property. In this command series, the demo references a custom PositionFcn
function, which uses a static position based on the position of the bodies; no
dynamics are involved. The custom PositionFcn function is located in the
matlabroot\toolbox\aero\astdemos folder.

1 Set the camera PositionFcn to the custom function
staticCameraPosition.

h.Camera.PositionFcn = @staticCameraPosition;

2-30

3-D Flight Data Playback

2 Run the animation again.

h.play();

Manipulating Bodies
This section illustrates some of the actions you can perform on bodies.

Moving and Repositioning Bodies. This series of commands illustrates
how to move and reposition bodies.

1 Set the starting time to 0.

t = 0;

2 Move the body to the starting position that is based on the time series data.
Use the Aero.Animation object Aero.Animation.updateBodies method.

h.updateBodies(t);

3 Update the camera position using the custom PositionFcn
function set in the previous section. Use the Aero.Animation object
Aero.Animation.updateCamera method.

h.updateCamera(t);

4 Reposition the bodies by first getting the current body position, then
separating the bodies.

a Get the current body positions and rotations from the objects of both
bodies.

pos1 = h.Bodies{1}.Position;
rot1 = h.Bodies{1}.Rotation;
pos2 = h.Bodies{2}.Position;
rot2 = h.Bodies{2}.Rotation;

b Separate and reposition the bodies by moving them to new positions.

h.moveBody(1,pos1 + [0 0 -3],rot1);
h.moveBody(2,pos1 + [0 0 0],rot2);

2-31

2 Using Aerospace Toolbox

Creating a Transparency in the First Body. This series of commands
illustrates how to create and attach a transparency to a body. The animation
object stores the body geometry as patches. This example manipulates the
transparency properties of these patches (see “Creating 3-D Models with
Patches” in the MATLAB documentation).

Note The use of transparencies might decrease animation speed on
platforms that use software OpenGL® rendering (see opengl in the MATLAB
documentation).

1 Change the body patch properties. Use the Aero.Body PatchHandles
property to get the patch handles for the first body.

patchHandles2 = h.Bodies{1}.PatchHandles;

2 Set the desired face and edge alpha values for the transparency.

2-32

3-D Flight Data Playback

desiredFaceTransparency = .3;
desiredEdgeTransparency = 1;

3 Get the current face and edge alpha data and change all values to
the desired alpha values. In the figure, note the first body now has a
transparency.

for k = 1:size(patchHandles2,1)

tempFaceAlpha = get(patchHandles2(k),'FaceVertexAlphaData');

tempEdgeAlpha = get(patchHandles2(k),'EdgeAlpha');

set(patchHandles2(k),...

'FaceVertexAlphaData',repmat(desiredFaceTransparency,size(tempFaceAlpha)));

set(patchHandles2(k),...

'EdgeAlpha',repmat(desiredEdgeTransparency,size(tempEdgeAlpha)));

end

2-33

2 Using Aerospace Toolbox

Changing the Color of the Second Body. This series of commands
illustrates how to change the color of a body. The animation object
stores the body geometry as patches. This example will manipulate the
FaceVertexColorData property of these patches.

1 Change the body patch properties. Use the Aero.Body PatchHandles
property to get the patch handles for the first body.

patchHandles3 = h.Bodies{2}.PatchHandles;

2 Set the patch color to red.

desiredColor = [1 0 0];

3 Get the current face color and data and propagate the new patch color,
red, to the face. Note the following:

• The if condition prevents the windows from being colored.

• The name property is stored in the body geometry data
(h.Bodies{2}.Geometry.FaceVertexColorData(k).name).

• The code changes only the indices in patchHandles3 with nonwindow
counterparts in the body geometry data.

Note If you cannot access the name property to determine the parts of
the vehicle to color, you must use an alternative way to selectively color
your vehicle.

for k = 1:size(patchHandles3,1)

tempFaceColor = get(patchHandles3(k),'FaceVertexCData');

tempName = h.Bodies{2}.Geometry.FaceVertexColorData(k).name;

if isempty(strfind(tempName,'Windshield')) &&...

isempty(strfind(tempName,'front-windows')) &&...

isempty(strfind(tempName,'rear-windows'))

set(patchHandles3(k),...

'FaceVertexCData',repmat(desiredColor,[size(tempFaceColor,1),1]));

end

end

2-34

3-D Flight Data Playback

Turning Off the Landing Gear of the Second Body. This command series
illustrates how to turn off the landing gear on the second body by turning off
the visibility of all the vehicle parts associated with the landing gear.

Note The indices into the patchHandles3 vector are determined from the
name property. If you cannot access the name property to determine the
indices, you must use an alternative way to determine the indices that
correspond to the geometry parts.

for k = [1:8,11:14,52:57]
set(patchHandles3(k),'Visible','off')

end

Using Aero.VirtualRealityAnimation Objects
The Aerospace Toolbox interface to virtual reality animation objects uses the
Simulink 3D Animation software. See Aero.VirtualRealityAnimation,
Aero.Node, and Aero.Viewpoint for details.

1 Create and configure an animation object.

a Configure the animation object.

b Initialize that object.

2 Enable the tracking of changes to virtual worlds.

3 Load the animation world.

4 Load time series data for simulation.

5 Set coordination information for the object.

6 Add a chase helicopter to the object.

7 Load time series data for chase helicopter simulation.

8 Set coordination information for the new object.

9 Add a new viewpoint for the helicopter.

2-35

2 Using Aerospace Toolbox

10 Play the animation.

11 Create a new viewpoint.

12 Add a route.

13 Add another helicopter.

14 Remove bodies.

15 Revert to the original world.

Running the Demo

1 Start the MATLAB software.

2 Run the demo either by entering astvranim in the MATLAB Command
Window or by finding the demo entry (Visualize Aircraft Takeoff via the
Simulink 3D Animation product) in the MATLAB Online Help and clicking
Run in the Command Window on its demo page.

While running, the demo performs several steps by issuing a series of
commands, as explained below.

Creating and Configuring a Virtual Reality Animation Object
This series of commands creates an animation object and configures the object.

1 Create an animation object.

h = Aero.VirtualRealityAnimation;

2 Configure the animation object to set the number of frames per second
(FramesPerSecond) property. This controls the rate at which frames are
displayed in the figure window.

h.FramesPerSecond = 10;

3 Configure the animation object to set the seconds of animation data per
second time scaling (TimeScaling) property.

h.TimeScaling = 5;

2-36

3-D Flight Data Playback

The combination of FramesPerSecond and TimeScaling property determine
the time step of the simulation. The settings in this demo result in a time
step of approximately 0.5 s.

4 Specify the .wrl file for the vrworld object.

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

The virtual reality animation object reads in the .wrl file.

Enabling Aero.VirtualRealityAnimation Methods to Track
Changes to Virtual Worlds
Aero.VirtualRealityAnimation methods that change the current virtual
reality world use a temporary .wrl file to manage those changes. To enable
these methods to work in a write-protected folder such as astdemos, type
the following.

1 Copy the virtual world file, asttkoff.wrl, to a temporary folder.

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

2 Set the asttkoff.wrl world filename to the copied .wrl file.

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

Loading the Animation World
Load the animation world described in the VRWorldFilename field of the
animation object. When parsing the world, this method creates node objects
for existing nodes with DEF names. The initialize method also opens the
Simulink 3D Animation Viewer.

h.initialize();

2-37

2 Using Aerospace Toolbox

Displaying Figures
While working with this demo, you can capture a view of a scene with the
takeVRCapture tool. This tool is specific to the astvranim demo. To display
the initial scene, type

takeVRCapture(h.VRFigure);

2-38

3-D Flight Data Playback

A MATLAB figure window displays with the initial scene.

Loading Time Series Data for Simulation
To prepare for simulation, set the simulation time series data.
takeoffData.mat contains logged simulated data that you can use
to set the time series data. takeoffData is set up as the Simulink
structure'StructureWithTime', which is a default data format.

1 Load the takeoffData.

load takeoffData

2 Set the time series data for the node.

h.Nodes{7}.TimeseriesSource = takeoffData;
h.Nodes{7}.TimeseriesSourceType = 'StructureWithTime';

Aligning the Position and Rotation Data with Surrounding
Virtual World Objects
The virtual reality animation object expects positions and rotations in
aerospace body coordinates. If the input data coordinate system is different, as
is the case in this demo, you must create a coordinate transformation function
to correctly line up the position and rotation data with the surrounding objects
in the virtual world. This code should set the coordinate transformation
function for the virtual reality animation. The custom transfer function for this
demo is matlabroot/toolbox/aero/astdemos/vranimCustomTransform.m.
In this demo, if the input translation coordinates are [x1,y1,z1], the custom
transform function must adjust them as:

[X,Y,Z] = -[y1,x1,z1]

To run this custom transformation function, type:

h.Nodes{7}.CoordTransformFcn = @vranimCustomTransform;

Viewing the Nodes in a Virtual Reality Animation Object
While working with this demo, you can view all the nodes currently in the
virtual reality animation object with the nodeInfo method.

2-39

2 Using Aerospace Toolbox

h.nodeInfo;

This method displays the nodes currently in your demo:

Node Information
1 _v1
2 Lighthouse
3 _v3
4 Terminal
5 Block
6 _V2
7 Plane
8 Camera1

Adding a Chase Helicopter
As part of the demo, add a chase helicopter node to your demo. Use the
addNode method to add another node to the virtual reality animation object.

Note By default, each time you add or remove a node, or when you call the
saveas method, a message shows the current .wrl file location. To disable
this message, set the 'ShowSaveWarning' property in the virtual reality
animation object. You can disable this message before adding the chase
helicopter.

1 Disable the message.

h.ShowSaveWarning = false;

2 Add the chase helicopter node.

h.addNode('Lynx',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);

The helicopter appears in the Simulink 3D Animation Viewer.

3 Move the camera angle of the virtual reality figure to view the aircraft
and newly added helicopter.

set(h.VRFigure,'CameraDirection',[0.45 0 -1]);

2-40

3-D Flight Data Playback

4 View the scene with the chase helicopter.

takeVRCapture(h.VRFigure);

Loading Time Series Data for Simulation
To prepare to simulate the chase helicopter, set the simulation time
series data. chaseData.mat contains logged simulated data that you

2-41

2 Using Aerospace Toolbox

can use to set the time series data. chaseData is set up as the Simulink
structure'StructureWithTime', which is a default data format.

1 Load the chaseData.

load chaseData

2 Set the time series data for the node.

h.Nodes{2}.TimeseriesSource = chaseData;

Aligning the Chase Helicopter Position and Rotation Data with
Surrounding Virtual World Objects
Use the custom transfer function to align the chase helicopter.

h.Nodes{2}.CoordTransformFcn = @vranimCustomTransform;

Adding a New Viewpoint
To add a viewpoint for the chase helicopter, use the addViewpoint method.
New viewpoints appear in the Viewpoints menu of the Simulink 3D
Animation Viewer. Type the following to add the viewpoint View From
Helicopter to the Viewpoints menu.

h.addViewpoint(h.Nodes{2}.VRNode,'children','chaseView','View From Helicopter');

2-42

3-D Flight Data Playback

Playing Back the Simulation
The play command animates the virtual reality world for the given position
and angle for the duration of the time series data. Set the orientation of the
viewpoint first.

1 Set the orientation of the viewpoint via the vrnode object associated with
the node object for the viewpoint.

setfield(h.Nodes{1}.VRNode,'orientation',[0 1 0 convang(160,'deg','rad')]);

set(h.VRFigure,'Viewpoint','View From Helicopter');

2 Play the animation.

h.play();

Adding a Route to the Camera1 Node
The vrworld has a Ride on the Plane viewpoint. To enable this viewpoint to
function as intended, connect the plane position to the Camera1 node with the
addRoute method. This method adds a VRML ROUTE statement.

h.addRoute('Plane','translation','Camera1','translation');

2-43

2 Using Aerospace Toolbox

Adding Another Helicopter and Viewing All Bodies
Simultaneously
You can add another helicopter to the scene and also change the viewpoint to
one that views all three bodies in the scene at once.

1 Add a new node, Lynx1.

h.addNode('Lynx1',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);

2 Change the viewpoint to one that views all three bodies.

set(h.VRFigure,'Viewpoint','See Whole Trajectory');

2-44

3-D Flight Data Playback

Removing Bodies
Use the removeNode method to remove the second helicopter. To obtain the
name of the node to remove, use the nodeInfo method.

1 View all the nodes.

h.nodeInfo

2-45

2 Using Aerospace Toolbox

Node Information
1 Lynx1_Inline
2 Lynx1
3 chaseView
4 Lynx_Inline
5 Lynx
6 _v1
7 Lighthouse
8 _v3
9 Terminal
10 Block
11 _V2
12 Plane
13 Camera1

2 Remove the Lynx1 node.

h.removeNode('Lynx1');

3 Change the viewpoint to one that views the whole trajectory.

set(h.VRFigure,'Viewpoint','See Whole Trajectory');

4 Check that you have removed the node.

h.nodeInfo

Node Information
1 chaseView
2 Lynx_Inline
3 Lynx
4 _v1
5 Lighthouse
6 _v3
7 Terminal
8 Block
9 _V2
10 Plane
11 Camera1

2-46

3-D Flight Data Playback

The following figure is a view of the entire trajectory with the third body
removed.

Reverting to the Original World
The original file name is stored in the 'VRWorldOldFilename' property
of the virtual reality animation object. To display the original world, set
'VRWorldFilename' to the original name and reinitialize it.

2-47

2 Using Aerospace Toolbox

1 Revert to the original world, 'VRWorldFilename'.

h.VRWorldFilename = h.VRWorldOldFilename{1};

2 Reinitialize the restored world.

h.initialize();

Closing and Deleting Worlds
To close and delete a world, use the delete method.

h.delete();

Using Aero.FlightGearAnimation Objects
The Aerospace Toolbox interface to the FlightGear flight simulator enables
you to visualize flight data in a three-dimensional environment. The
third-party FlightGear simulator is an open source software package available
through a GNU® General Public License (GPL). This section explains how to
obtain and install the third-party FlightGear flight simulator. It then explains
how to play back 3-D flight data by using a FlightGear demo, provided with
your Aerospace Toolbox software, as an example.

• “About the FlightGear Interface” on page 2-48

• “Configuring Your Computer for FlightGear” on page 2-49

• “Installing and Starting FlightGear” on page 2-52

• “Working with the Flight Simulator Interface” on page 2-53

• “Running the Demo” on page 2-55

About the FlightGear Interface
The FlightGear flight simulator interface included with the Aerospace Toolbox
product is a unidirectional transmission link from the MATLAB software
to FlightGear using FlightGear’s published net_fdm binary data exchange
protocol. Data is transmitted via UDP network packets to a running instance
of FlightGear. The toolbox supports multiple standard binary distributions of
FlightGear. See “Working with the Flight Simulator Interface” on page 2-53
for interface details.

2-48

3-D Flight Data Playback

FlightGear is a separate software entity neither created, owned, nor
maintained by MathWorks.

• To report bugs in or request enhancements to the Aerospace Toolbox
FlightGear interface, contact MathWorks Technical Support at
http://www.mathworks.com/contact_TS.html.

• To report bugs or request enhancements to FlightGear itself, visit
www.flightgear.org and use the contact page.

Obtaining FlightGear. You can obtain FlightGear from
www.flightgear.org in the download area or by ordering CDs from
FlightGear. The download area contains extensive documentation for
installation and configuration. Because FlightGear is an open source project,
source downloads are also available for customization and porting to custom
environments.

Configuring Your Computer for FlightGear
You must have a high performance graphics card with stable drivers to use
FlightGear. For more information, see the FlightGear CD distribution or the
hardware requirements and documentation areas of the FlightGear Web
site, www.flightgear.org.

MathWorks tests of FlightGear performance and stability indicate significant
sensitivity to computer video cards, driver versions, and driver settings. You
need OpenGL support with hardware acceleration activated. The OpenGL
settings are particularly important. Without proper setup, performance can
drop from about a 30 frames-per-second (fps) update rate to less than 1 fps.

Graphics Recommendations for Microsoft Windows. MathWorks
recommends the following for Windows® users:

• Choose a graphics card with good OpenGL performance.

• Always use the latest tested and stable driver release for your video card.
Test the driver thoroughly on a few computers before deploying to others.

For Microsoft® Windows XP systems running on x86 (32-bit) or
AMD-64/EM64T chip architectures, the graphics card operates in the
unprotected kernel space known as Ring Zero. This means that glitches in
the driver can cause the Windows operating system to lock or crash. Before

2-49

http://www.mathworks.com/contact_TS.html
http://www.flightgear.org
http://www.flightgear.org
http://www.flightgear.org

2 Using Aerospace Toolbox

buying a large number of computers for 3-D applications, test, with your
vendor, one or two computers to find a combination of hardware, operating
system, drivers, and settings that are stable for your applications.

Setting Up OpenGL Graphics on Windows. For complete information on
Silicon Graphics OpenGL settings, refer to the documentation at the OpenGL
Web site, www.opengl.org.

Follow these steps to optimize your video card settings. Your driver’s panes
might look different.

1 Ensure that you have activated the OpenGL hardware acceleration on
your video card. On Windows, access this configuration through Start >
Settings > Control Panel > Display, which opens the following dialog
box. Select the Settings tab.

2 Click the Advanced button in the lower right of the dialog box, which
opens the graphics card’s custom configuration dialog box, and go to the
OpenGL tab. For an ATI Mobility Radeon 9000 video card, the OpenGL
pane looks like this:

2-50

http://www.opengl.org/

3-D Flight Data Playback

3 For best performance, move the Main Settings slider near the top of the
dialog box to the Performance end of the slider.

4 If stability is a problem, try other screen resolutions, other color depths in
the Displays pane, and other OpenGL acceleration modes.

Many cards perform much better at 16 bits-per-pixel color depth (also known
as 65536 color mode, 16-bit color). For example, on an ATI Mobility Radeon
9000 running a given model, 30 fps are achieved in 16-bit color mode, while 2
fps are achieved in 32-bit color mode.

Setup on Linux®, Mac OS® X, and Other Platforms. FlightGear
distributions are available for Linux, Mac OS X, and other UNIX® platforms
from the FlightGear Web site, www.flightgear.org. Installation on these
platforms, like Windows, requires careful configuration of graphics cards and
drivers. Consult the documentation and hardware requirements sections
at the FlightGear Web site.

2-51

http://www.flightgear.org

2 Using Aerospace Toolbox

Using MATLAB Graphics Controls to Configure Your OpenGL Settings.
You can also control your OpenGL rendering from the MATLAB command
line with the MATLAB Graphics opengl command. Consult the opengl
command reference for more information.

Installing and Starting FlightGear
The extensive FlightGear documentation guides you through the installation
in detail. Consult the documentation section of the FlightGear Web site for
complete installation instructions: www.flightgear.org.

Keep the following points in mind:

• Generous central processor speed, system and video RAM, and virtual
memory are essential for good flight simulator performance.

MathWorks recommends a minimum of 512 megabytes of system RAM and
128 megabytes of video RAM for reasonable performance.

• Be sure to have sufficient disk space for the FlightGear download and
installation.

• MathWorks recommends configuring your computer’s graphics card before
you install FlightGear. See the preceding section, “Configuring Your
Computer for FlightGear” on page 2-49.

• Shutting down all running applications (including the MATLAB software)
before installing FlightGear is recommended.

• MathWorks tests indicate that the operational stability of FlightGear
is especially sensitive during startup. It is best to not move, resize,
mouse over, overlap, or cover up the FlightGear window until the initial
simulation scene appears after the startup splash screen fades out.

• The current releases of FlightGear are optimized for flight visualization at
altitudes below 100,000 feet. FlightGear does not work well or at all with
very high altitude and orbital views.

The Aerospace Toolbox product supports FlightGear on a number of platforms
(http://www.mathworks.com/products/aerotb/requirements.html). The
following table lists the properties you should be aware of before you start to
use FlightGear.

2-52

http://www.flightgear.org
http://www.mathworks.com/products/aerotb/requirements.html

3-D Flight Data Playback

FlightGear
Property

Folder Description Platforms Typical Location

Windows C:\Program Files\FlightGear
(default)

Sun™
Solaris™ or
Linux

Directory into which you installed
FlightGear

FlightGearBase-
Directory

FlightGear
installation folder.

Mac® /Applications
(folder to which you dragged the
FlightGear icon)

Windows C:\Program Files\-
FlightGear\data\-
Aircraft\HL20
(default)

Solaris or
Linux

$FlightGearBaseDirectory/-
data/Aircraft/HL20

GeometryModelName Model geometry
folder

Mac $FlightGearBaseDirectory/-
FlightGear.app/Contents/-
Resources/data/Aircraft/HL20

Working with the Flight Simulator Interface
The Aerospace Toolbox product provides a demo named Displaying Flight
Trajectory Data, which shows you how you can visualize flight trajectories
with FlightGear Animation object. The demo is intended to be modified
depending on the particulars of your FlightGear installation. This section
explains how to run this demo. Use this demo as an example to play back your
own 3-D flight data with FlightGear.

You need to have FlightGear installed and configured before attempting to
simulate this model. See “About the FlightGear Interface” on page 2-48.

To run the demo:

1 Import the aircraft geometry into FlightGear.

2 Run the demo. The demo performs the following steps:

2-53

2 Using Aerospace Toolbox

a Loads recorded trajectory data

b Creates a time series object from trajectory data

c Creates a FlightGearAnimation object

3 Modify the animation object properties, if needed.

4 Create a run script for launching FlightGear flight simulator.

5 Start FlightGear flight simulator.

6 Play back the flight trajectory.

The following sections describe how to perform these steps in detail.

Importing the Aircraft Geometry into FlightGear. Before running the
demo, copy the aircraft geometry model into FlightGear. From the following
procedures, choose the one appropriate for your platform. This section
assumes that you have read “Installing and Starting FlightGear” on page 2-52.

If your platform is Windows:

1 Go to your installed FlightGear folder. Open the data folder, then the
Aircraft folder: FlightGear\data\Aircraft\.

2 You may already have an HL20 subfolder there, if you have previously run
the Aerospace Blockset NASA HL-20 with FlightGear Interface demo. In
this case, you don’t have to do anything, because the geometry model
is the same.

Otherwise, copy the HL20 folder from the
matlabroot\toolbox\aero\aerodemos\ folder to the
FlightGear\data\Aircraft\ folder. This folder contains the
preconfigured geometries for the HL-20 simulation and HL20-set.xml.
The file matlabroot\toolbox\aero\aerodemos\HL20\models\HL20.xml
defines the geometry.

If your platform is Solaris or Linux:

1 Go to your installed FlightGear folder. Open the data folder, then the
Aircraft folder: $FlightGearBaseDirectory/data/Aircraft/.

2-54

3-D Flight Data Playback

2 You may already have an HL20 subfolder there, if you have previously run
the Aerospace Blockset NASA HL-20 with FlightGear Interface demo. In
this case, you do not have to do anything, because the geometry model
is the same.

Otherwise, copy the HL20 folder from the
matlabroot/toolbox/aero/aerodemos/ folder to the
$FlightGearBaseDirectory/data/Aircraft/ folder. This folder contains
the preconfigured geometries for the HL-20 simulation and HL20-set.xml.
The file matlabroot/toolbox/aero/aerodemos/HL20/models/HL20.xml
defines the geometry.

If your platform is Mac:

1 Open a terminal.

2 List the contents of the Aircraft folder. For example, type

ls $FlightGearBaseDirectory/data/Aircraft/

3 You may already have an HL20 subfolder there, if you have previously run
the Aerospace Blockset NASA HL-20 with FlightGear Interface demo. In
this case, you do not have to do anything, because the geometry model is
the same. Continue to “Running the Demo” on page 2-27.

Otherwise, copy the HL20 folder from the

matlabroot/toolbox/aero/aerodemos/

folder to the

$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/data/Aircraft/

folder. This folder contains the preconfigured geometries
for the HL-20 simulation and HL20-set.xml. The file
matlabroot/toolbox/aero/aerodemos/HL20/models/HL20.xml
defines the geometry.

Running the Demo

1 Start the MATLAB software.

2-55

2 Using Aerospace Toolbox

2 Run the demo either by entering astfganim in the MATLAB Command
Window or by finding the demo entry (Displaying Flight Trajectory Data)
in the MATLAB Online Help and clicking Run in the Command Window
on its demo page.

While running, the demo performs several steps by issuing a series of
commands, as explained below.

Loading Recorded Flight Trajectory Data. The flight trajectory data for
this example is stored in a comma separated value formatted file. Using
dlmread, the data is read from the file starting at row 1 and column 0, which
skips the header information.

tdata = dlmread('asthl20log.csv',',',1,0);

Creating a Time Series Object from Trajectory Data. The time series
object, ts, is created from the latitude, longitude, altitude, and Euler angle
data along with the time array in tdata using the MATLAB timeseries
command. Latitude, longitude, and Euler angles are also converted from
degrees to radians using the convang function.

ts = timeseries([convang(tdata(:,[3 2]),'deg','rad') ...

tdata(:,4) convang(tdata(:,5:7),'deg','rad')],tdata(:,1));

Creating a FlightGearAnimation Object. This series of commands creates
a FlightGearAnimation object:

1 Open a FlightGearAnimation object.

h = fganimation;

2 Set FlightGearAnimation object properties for the time series.

h.TimeseriesSourceType = 'Timeseries';
h.TimeseriesSource = ts;

3 Set FlightGearAnimation object properties relating to FlightGear. These
properties include the path to the installation folder, the version number,
the aircraft geometry model, and network information for the FlightGear
flight simulator.

h.FlightGearBaseDirectory = 'C:\Program Files\FlightGear20';

2-56

3-D Flight Data Playback

h.FlightGearVersion = '2.0';
h.GeometryModelName = 'HL20';
h.DestinationIpAddress = '127.0.0.1';
h.DestinationPort = '5502';

4 Set the initial conditions (location and orientation) for the FlightGear
flight simulator.

h.AirportId = 'KSFO';
h.RunwayId = '10L';
h.InitialAltitude = 7224;
h.InitialHeading = 113;
h.OffsetDistance = 4.72;
h.OffsetAzimuth = 0;

5 Setting the seconds of animation data per second of wall-clock time.

h.TimeScaling = 5;

6 Checking the FlightGearAnimation object properties and their values.

get(h)

At this point, the demo stops running and returns the FlightGearAnimation
object, h:

TimeseriesSource: [196x1 timeseries]
TimeseriesSourceType: 'Timeseries'

TimeseriesReadFcn: @TimeseriesRead
TimeScaling: 5

FramesPerSecond: 12
FlightGearVersion: '2.0'

OutputFileName: 'runfg.bat'
FlightGearBaseDirectory: 'C:\Program Files\FlightGear20'

GeometryModelName: 'HL20'
DestinationIpAddress: '127.0.0.1'

DestinationPort: '5502'
AirportId: 'KSFO'
RunwayId: '10L'

InitialAltitude: 7224
InitialHeading: 113
OffsetDistance: 4.7200

2-57

2 Using Aerospace Toolbox

OffsetAzimuth: 0

You can now set the object properties for data playback (see “Modifying the
FlightGearAnimation Object Properties” on page 2-58).

Modifying the FlightGearAnimation Object Properties. Modify the
FlightGearAnimation object properties as needed. If your FlightGear
installation folder is other than that in the demo (for example, FlightGear),
modify the FlightGearBaseDirectory property by issuing the following
command:

h.FlightGearBaseDirectory = 'C:\Program Files\FlightGear';

Similarly, if you want to use a particular file name for the run script, modify
the OutputFileName property.

Verify the FlightGearAnimation object properties:

get(h)

You can now generate the run script (see “Generating the Run Script” on
page 2-58).

Generating the Run Script. To start FlightGear with the desired initial
conditions (location, date, time, weather, operating modes), it is best to create
a run script by using the GenerateRunScript command:

GenerateRunScript(h)

By default, GenerateRunScript saves the run script as a text file
named runfg.bat. You can specify a different name by modifying the
OutputFileName property of the FlightGearAnimation object, as described
in the previous step.

This file does not need to be generated each time the data is viewed, only
when the desired initial conditions or FlightGear information changes.

You are now ready to start FlightGear (see “Starting the FlightGear Flight
Simulator” on page 2-59).

2-58

3-D Flight Data Playback

Installing Additional FlightGear Scenery. When you install the
FlightGear software, the installation provides a basic level of scenery files.
The FlightGear documentation thoroughly guides you through installing
scenery as part the general FlightGear installation.

If you need to install more FlightGear scenery files, see the instructions at
http://www.flightgear.org. Those instructions describe how to install
the additional scenery in a default location. MathWorks recommends that
you follow those instructions.

If you must install additional scenery in a non-standard location, try
setting the FG_SCENERY environment variable in the script output
from the GenerateRunScript function. See the documentation at
http://www.flightgear.org for a description of the FG_SCENERY variable.

Note Each time you run the GenerateRunScript function, it creates a new
script and overwrites any edits you have added.

Starting the FlightGear Flight Simulator. To start FlightGear from the
MATLAB command prompt, use the system command to execute the run
script. Provide the name of the output file created by GenerateRunScript
as the argument:

system('runfg.bat &');

FlightGear starts in a separate window.

Tip With the FlightGear window in focus, press the V key to alternate
between the different aircraft views: cockpit view, helicopter view, chase
view, and so on.

You are now ready to play back data (see “Playing Back the Flight Trajectory”
on page 2-60).

2-59

http://www.flightgear.org/
http://www.flightgear.org/

2 Using Aerospace Toolbox

Playing Back the Flight Trajectory. Once FlightGear is running, the
FlightGearAnimation object can start to communicate with FlightGear. To
animate the flight trajectory data, use the play command:

play(h)

The following illustration shows a snapshot of flight data playback in tower
view without yaw.

2-60

3

Function Reference

Animation Objects (p. 3-3) Manipulate Aero.Animation objects

Body Objects (p. 3-4) Manipulate Aero.Body objects

Camera Objects (p. 3-5) Manipulate Aero.Camera objects

FlightGear Objects (p. 3-5) Manipulate
Aero.FlightGearAnimation objects

Geometry Objects (p. 3-6) Manipulate Aero.Geometry objects

Node Objects (p. 3-7) Manipulate Aero.Node objects

Viewpoint Objects (p. 3-8) Manipulate Aero.Viewpoint objects

Virtual Reality Objects (p. 3-9) Manipulate
Aero.VirtualRealityAnimation
objects

Axes Transformations (p. 3-10) Transform axes of coordinate
systems to different types, such as
Euler angles to quaternions and vice
versa

Environment (p. 3-11) Simulate various aspects of aircraft
environment, such as atmosphere
conditions, gravity, magnetic fields,
and wind

File Reading (p. 3-12) Read standard aerodynamic file
formats into the MATLAB interface

Flight Parameters (p. 3-12) Various flight parameters, including
ideal airspeed correction, Mach
number, and dynamic pressure

Gas Dynamics (p. 3-12) Various gas dynamics tables

3 Function Reference

Quaternion Math (p. 3-13) Common mathematical and
matrix operations, including
quaternion multiplication, division,
normalization, and rotating vector
by quaternion

Time (p. 3-13) Time calculations, including Julian
dates, decimal year, and leap year

Unit Conversion (p. 3-13) Convert common measurement units
from one system to another, such as
converting acceleration from feet per
second to meters per second and vice
versa

3-2

Animation Objects

Animation Objects

addBody (Aero.Animation) Add loaded body to animation object
and generate its patches

Aero.Animation Construct animation object

createBody (Aero.Animation) Create body and its associated
patches in animation

delete (Aero.Animation) Destroy animation object

hide (Aero.Animation) Hide animation figure

initialize (Aero.Animation) Create animation object figure and
axes and build patches for bodies

initIfNeeded (Aero.Animation) Initialize animation graphics if
needed

moveBody (Aero.Animation) Move body in animation object

play (Aero.Animation) Animate Aero.Animation object
given position/angle time series

removeBody (Aero.Animation) Remove one body from animation

show (Aero.Animation) Show animation object figure

updateBodies (Aero.Animation) Update bodies of animation object

updateCamera (Aero.Animation) Update camera in animation object

3-3

3 Function Reference

Body Objects

Body (Aero.Body) Construct body object for use with
animation object

findstartstoptimes (Aero.Body) Return start and stop times of time
series data

generatePatches (Aero.Body) Generate patches for body with
loaded face, vertex, and color data

load (Aero.Body) Get geometry data from source

move (Aero.Body) Change animation body position and
orientation

update (Aero.Body) Change body position and orientation
as function of time

3-4

Camera Objects

Camera Objects

Camera (Aero.Camera) Construct camera object for use with
animation object

update (Aero.Camera) Update camera position based on
time and position of other Aero.Body
objects

FlightGear Objects

ClearTimer
(Aero.FlightGearAnimation)

Clear and delete timer for animation
of FlightGear flight simulator

delete (Aero.FlightGearAnimation) Destroy FlightGear animation object

fganimation
(Aero.FlightGearAnimation)

Construct FlightGear animation
object

GenerateRunScript
(Aero.FlightGearAnimation)

Generate run script for FlightGear
flight simulator

initialize
(Aero.FlightGearAnimation)

Set up FlightGear animation object

play (Aero.FlightGearAnimation) Animate FlightGear flight simulator
using given position/angle time
series

SetTimer
(Aero.FlightGearAnimation)

Set name of timer for animation of
FlightGear flight simulator

update (Aero.FlightGearAnimation) Update position data to FlightGear
animation object

3-5

3 Function Reference

Geometry Objects

Geometry (Aero.Geometry) Construct 3-D geometry for use with
animation object

read (Aero.Geometry) Read geometry data using current
reader

3-6

Node Objects

Node Objects

findstartstoptimes (Aero.Node) Return start and stop times for time
series data

move (Aero.Node) Change node translation and
rotation

Node (Aero.Node) Create node object for use with
virtual reality animation

update (Aero.Node) Change node position and
orientation versus time data

3-7

3 Function Reference

Viewpoint Objects

Viewpoint (Aero.Viewpoint) Create viewpoint object for use in
virtual reality animation

3-8

Virtual Reality Objects

Virtual Reality Objects
addNode
(Aero.VirtualRealityAnimation)

Add existing node to current virtual
reality world

addRoute
(Aero.VirtualRealityAnimation)

Add VRML ROUTE statement to
virtual reality animation

addViewpoint
(Aero.VirtualRealityAnimation)

Add viewpoint for virtual reality
animation

delete
(Aero.VirtualRealityAnimation)

Destroy virtual reality animation
object

initialize
(Aero.VirtualRealityAnimation)

Create and populate virtual reality
animation object

nodeInfo
(Aero.VirtualRealityAnimation)

Create list of nodes associated with
virtual reality animation object

play (Aero.VirtualRealityAnimation) Animate virtual reality world for
given position and angle in time
series data

removeNode
(Aero.VirtualRealityAnimation)

Remove node from virtual reality
animation object

removeViewpoint
(Aero.VirtualRealityAnimation)

Remove viewpoint node from virtual
reality animation

saveas
(Aero.VirtualRealityAnimation)

Save virtual reality world associated
with virtual reality animation object

updateNodes
(Aero.VirtualRealityAnimation)

Change virtual reality animation
node position and orientation as
function of time

VirtualRealityAnimation
(Aero.VirtualRealityAnimation)

Construct virtual reality animation
object

3-9

3 Function Reference

Axes Transformations
angle2dcm Create direction cosine matrix from

rotation angles

angle2quat Convert rotation angles to
quaternion

dcm2alphabeta Convert direction cosine matrix to
angle of attack and sideslip angle

dcm2angle Create rotation angles from direction
cosine matrix

dcm2latlon Convert direction cosine matrix to
geodetic latitude and longitude

dcm2quat Convert direction cosine matrix to
quaternion

dcmbody2wind Convert angle of attack and sideslip
angle to direction cosine matrix

dcmecef2ned Convert geodetic latitude and
longitude to direction cosine matrix

ecef2lla Convert Earth-centered Earth-fixed
(ECEF) coordinates to geodetic
coordinates

geoc2geod Convert geocentric latitude to
geodetic latitude

geod2geoc Convert geodetic latitude to
geocentric latitude

lla2ecef Convert geodetic coordinates to
Earth-centered Earth-fixed (ECEF)
coordinates

quat2angle Convert quaternion to rotation
angles

quat2dcm Convert quaternion to direction
cosine matrix

3-10

Environment

Environment
atmoscira Use COSPAR International

Reference Atmosphere 1986 model

atmoscoesa Use 1976 COESA model

atmosisa Use International Standard
Atmosphere model

atmoslapse Use Lapse Rate Atmosphere model

atmosnonstd Use climatic data fromMIL-STD-210
or MIL-HDBK-310

atmosnrlmsise00 Implement mathematical
representation of 2001 United
States Naval Research Laboratory
Mass Spectrometer and Incoherent
Scatter Radar Exosphere

atmospalt Calculate pressure altitude based on
ambient pressure

geoidegm96 Calculate geoid height as determined
from EGM96 Geopotential Model

geoidheight Calculate geoid height

gravitycentrifugal Implement centrifugal effect of
planetary gravity

gravitysphericalharmonic Implement spherical harmonic
representation of planetary gravity

gravitywgs84 Implement 1984 World Geodetic
System (WGS84) representation of
Earth’s gravity

gravityzonal Implement zonal harmonic
representation of planetary gravity

wrldmagm Use World Magnetic Model

3-11

3 Function Reference

File Reading
datcomimport Bring DATCOM file into MATLAB

environment

Flight Parameters

airspeed Airspeed from velocity

alphabeta Incidence and sideslip angles

dpressure Compute dynamic pressure using
velocity and density

geocradius Estimate radius of ellipsoid planet
at geocentric latitude

machnumber Compute Mach number using
velocity and speed of sound

rrdelta Compute relative pressure ratio

rrsigma Compute relative density ratio

rrtheta Compute relative temperature ratio

Gas Dynamics

flowfanno Fanno line flow relations

flowisentropic Isentropic flow ratios

flownormalshock Normal shock relations

flowprandtlmeyer Calculate Prandtl-Meyer functions
for expansion waves

flowrayleigh Rayleigh line flow relations

3-12

Quaternion Math

Quaternion Math
quatconj Calculate conjugate of quaternion

quatdivide Divide quaternion by another
quaternion

quatinv Calculate inverse of quaternion

quatmod Calculate modulus of quaternion

quatmultiply Calculate product of two quaternions

quatnorm Calculate norm of quaternion

quatnormalize Normalize quaternion

quatrotate Rotate vector by quaternion

Time
decyear Calculate decimal year

juliandate Calculate Julian date

leapyear Determine leap year

mjuliandate Calculate modified Julian date

Unit Conversion
convacc Convert from acceleration units to

desired acceleration units

convang Convert from angle units to desired
angle units

convangacc Convert from angular acceleration
units to desired angular acceleration
units

3-13

3 Function Reference

convangvel Convert from angular velocity units
to desired angular velocity units

convdensity Convert from density units to desired
density units

convforce Convert from force units to desired
force units

convlength Convert from length units to desired
length units

convmass Convert from mass units to desired
mass units

convpres Convert from pressure units to
desired pressure units

convtemp Convert from temperature units to
desired temperature units

3-14

4

Alphabetical List

Aero.Animation.addBody

Purpose Add loaded body to animation object and generate its patches

Syntax idx = addBody(h,b)
idx = h.addBody(b)

Description idx = addBody(h,b) and idx = h.addBody(b) add a loaded body, b,
to the animation object h and generates its patches. idx is the index of
the body to be added.

Input
Arguments

h Animation object.

b Loaded body.

Output
Arguments

idx Index of the body to be added.

Examples Add a second body to the list that is a pointer to the first body. This
means that if you change the properties of one body, the properties of
the other body change correspondingly.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
b = h.Bodies{1};
idx2 = h.addBody(b);

4-2

addNode (Aero.VirtualRealityAnimation)

Purpose Add existing node to current virtual reality world

Syntax addNode(h, node_name, wrl_file)
h.addNode(node_name, wrl_file)

Description addNode(h, node_name, wrl_file) and h.addNode(node_name,
wrl_file) add an existing node, node_name, to the current virtual
reality world. The wrl_file is the file from which the new node is
taken. addNode adds a new node named node_name, which contains (or
points to) the wrl_file. node_name must be unique from other node
names in the same .wrl file. wrl_file must contain the node to be
added. You must specify the full path for this file. The vrnode object
associated with the node object must be defined using a DEF statement
in the .wrl file. This method creates a node object on the world of type
Transform.

When you use the addNode method to add a node, all the objects in the
.wrl file will be added to the virtual reality animation object under one
node. If you want to add separate nodes for the objects in the .wrl file,
place each node in a separate .wrl file.

Example Add node to world defined in chaseHelicopter.wrl.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

h.addNode('Lynx',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);

See Also Aero.Node, move, removeNode, updateNodes,

Aero.VirtualRealityAnimation

4-3

addRoute (Aero.VirtualRealityAnimation)

Purpose Add VRML ROUTE statement to virtual reality animation

Syntax addRoute(h, nodeOut, eventOut, nodeIn, eventIn)
h.addNode(nodeOut, eventOut, nodeIn, eventIn)

Description addRoute(h, nodeOut, eventOut, nodeIn, eventIn) and
h.addNode(nodeOut, eventOut, nodeIn, eventIn) add a VRML
ROUTE statement to the virtual reality animation, where nodeOut
is the node from which information is routed, eventOut is the event
(property), nodeIn is the node to which information is routed, and
eventIn is the receiving event (property).

Examples Add a ROUTE command to connect the Plane position to the Camera1
node.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

h.addNode('Lynx',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);

h.addRoute('Plane','translation','Camera1','translation');

See Also addViewpoint

4-4

addViewpoint (Aero.VirtualRealityAnimation)

Purpose Add viewpoint for virtual reality animation

Syntax addViewpoint(h, parent_node, parent_field, node_name)
h.addViewpoint(parent_node, parent_field, node_name)
addViewpoint(h, parent_node, parent_field, node_name,

description)
h.addViewpoint(parent_node, parent_field, node_name,

description)
addViewpoint(h, parent_node, parent_field, node_name,

description, position)
h.addViewpoint(parent_node, parent_field, node_name,

description, position)
addViewpoint(h, parent_node, parent_field, node_name,

description, position, orientation)
h.addViewpoint(parent_node, parent_field, node_name,

description, position, orientation)

Description addViewpoint(h, parent_node, parent_field, node_name) and
h.addViewpoint(parent_node, parent_field, node_name) add a
viewpoint named node_name whose parent_node is the parent node
field of the vrnode object and whose parent_field is a valid parent
field of the vrnode object to the virtual world animation object, h.

addViewpoint(h, parent_node, parent_field, node_name,
description)and h.addViewpoint(parent_node, parent_field,
node_name, description) add a viewpoint named node_name whose
parent_node is the parent node field of the vrnode object and whose
parent_field is a valid parent field of the vrnode object to the virtual
world animation object, h. description is the string you want to
describe the viewpoint.

addViewpoint(h, parent_node, parent_field, node_name,
description, position) and h.addViewpoint(parent_node,
parent_field, node_name, description, position) add a
viewpoint named node_name whose parent_node is the parent node
field of the vrnode object and whose parent_field is a valid parent
field of the vrnode object to the virtual world animation object, h.
description is the string you want to describe the viewpoint and

4-5

addViewpoint (Aero.VirtualRealityAnimation)

position is the position of the viewpoint. Specify position using
VRML coordinates (x y z).

addViewpoint(h, parent_node, parent_field,
node_name, description, position, orientation) and
h.addViewpoint(parent_node, parent_field, node_name,
description, position, orientation) add a viewpoint named
node_name whose parent_node is the parent node field of the vrnode
object and whose parent_field is a valid parent field of the vrnode
object to the virtual world animation object, h. description is the string
you want to describe the viewpoint, position is the position of the
viewpoint, and orientation is the orientation of the viewpoint. Specify
position using VRML coordinates (x y z). Specify orientation in a
VRML axes angle format (x y z Θ).

Note If you call addViewpoint with only the description argument,
you must set the position and orientation of the viewpoint with the
Simulink 3D Animation vrnode/setfield function. This requires you
to use VRML coordinates.

Examples Add a viewpoint named chaseView.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

h.addViewpoint(h.Nodes{2}.VRNode,'children','chaseView','View From Helicopter');

See Also addRoute, removeViewpoint

4-6

Aero.Animation class

Purpose Visualize aerospace animation

Description Use the Aero.Animation class to visualize flight data without any other
tool or toolbox. You only need the Aerospace Toolbox to visualize this
data.

Construction Aero.Animation Construct animation object

Methods addBody Add loaded body to animation
object and generate its patches

createBody Create body and its associated
patches in animation

delete Destroy animation object

hide Hide animation figure

initialize Create animation object figure
and axes and build patches for
bodies

initIfNeeded Initialize animation graphics if
needed

moveBody Move body in animation object

play Animate Aero.Animation object
given position/angle time series

removeBody Remove one body from animation

show Show animation object figure

updateBodies Update bodies of animation object

updateCamera Update camera in animation
object

4-7

Aero.Animation class

Properties Bodies Specify name of animation object

Camera Specify camera that animation
object contains

Figure Specify name of figure object

FigureCustomizationFcn Specify figure customization
function

FramesPerSecond Animation rate

Name Specify name of animation object

TCurrent Current time

TFinal End time

TimeScaling Scaling time

TStart Start time

See Also Aero.FlightGearAnimation
Aero.VirtualRealityAnimation
“Using Aero.Animation Objects” on page 2-26

4-8

Aero.Animation

Purpose Construct animation object

Syntax h = Aero.Animation

Description h = Aero.Animation constructs an animation object. The animation
object is returned to h.

Note The Aero.Animation constructor does not retain the properties
of previously created animation objects, even those that you have saved
to a MAT-file. This means that subsequent calls to the animation object
constructor always create animation objects with default properties.

Examples h=Aero.Animation

4-9

Aero.Body

Purpose Create body object for use with animation object

Syntax h = Aero.Body

Description h = Aero.Body constructs a body for an animation object. The
animation object is returned in h. To use the Aero.Body object, you
typically:

1 Create the animation body.

2 Configure or customize the body object.

3 Load the body.

4 Generate patches for the body (requires an axes from a figure).

5 Set time series data source.

6 Move or update the body.

By default, an Aero.Body object natively uses aircraft x-y-z coordinates
for the body geometry and the time series data. It expects the rotation
order z-y-x (psi, theta, phi).

Convert time series data from other coordinate systems on the fly by
registering a different CoordTransformFcn function.

Constructor
Summary

Constructor Description

Body Construct body object for use with animation
object.

4-10

Aero.Body

Method
Summary

Method Description

findstartstoptimes Return start and stop times of time series
data.

generatePatches Generate patches for body with loaded face,
vertex, and color data.

load Get geometry data from source.

move Change Aero.Body position and orientation.

update Changes body position and orientation
versus time data.

Property
Summary

Property Description Values

CoordTransformFcn Specify a function that
controls the coordinate
transformation.

string

Name Specify name of body.

Position Specify position of
body.

MATLAB array

Rotation Specify rotation of
body.

MATLAB array

Geometry Specify geometry of
body.

handle

PatchGeneration-
Fcn

Specify patch
generation function.

MATLAB array

PatchHandles Specify patch handles. MATLAB array

ViewingTransform Specify viewing
transform.

MATLAB array

TimeseriesSource Specify time series
source.

MATLAB array

4-11

Aero.Body

Property Description Values

TimeseriesSource-
Type

Specify the type of time
series data stored in
'TimeseriesSource'.
Five values are
available. They are
listed in the following
table. The default
value is 'Array6DoF'.

string

TimeseriesReadFcn Specify time series
read function.

MATLAB array

The time series data, stored in the property 'TimeseriesSource', is
interpreted according to the 'TimeseriesSourceType' property, which
can be one of:

'Timeseries' MATLAB time series data with six
values per time:

lat lon alt phi theta psi

The values are resampled.

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: lat lon
alt

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

4-12

Aero.Body

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data: time
lat lon alt phi theta psi. If a
double-precision array of 8 or more
columns is in 'TimeseriesSource',
the first 7 columns are used as 6-DoF
data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
lat alt theta. If a double-precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

See Also Aero.Geometry

4-13

Aero.Camera

Purpose Construct camera object for use with animation object

Syntax h = Aero.Camera

Description h = Aero.Camera constructs a camera object h for use with an
animation object. The camera object uses the registered coordinate
transform. By default, this is an aerospace body coordinate system.
Axes of custom coordinate systems must be orthogonal.

By default, an Aero.Body object natively uses aircraft x-y-z coordinates
for the body geometry and the time series data. Convert time series
data from other coordinate systems on the fly by registering a different
CoordTransformFcn function.

Constructor
Summary

Constructor Description

Camera Construct camera object for use with animation
object.

Method
Summary

Method Description

update Update camera position based on time and
position of other Aero.Body objects.

Property
Summary

Property Description Values

CoordTransformFcn Specify a function that
controls the coordinate
transformation.

MATLAB array

PositionFcn Specify a function that
controls the position of
a camera relative to an
animation body.

MATLAB array

Position Specify position of
camera.

MATLAB array
[-150,-50,0]

4-14

Aero.Camera

Property Description Values

Offset Specify offset of
camera.

MATLAB array
[-150,-50,0]

AimPoint Specify aim point of
camera.

MATLAB array
[0,0,0]

UpVector Specify up vector of
camera.

MATLAB array
[0,0,-1]

ViewAngle Specify view angle of
camera.

MATLAB array {3}

ViewExtent Specify view extent of
camera.

MATLAB array
{[-50,50]}

xlim Specify x-axis limit of
camera.

MATLAB array
{[-50,50]}

ylim Specify y-axis limit of
camera.

MATLAB array
{[-50,50]}

zlim Specify z-axis limit of
camera.

MATLAB array
{[-50,50]}

PrevTime Specify previous time
of camera.

MATLAB array {0}

UserData Specify custom data. MATLAB array {[]}

See Also Aero.Geometry

4-15

Aero.FlightGearAnimation

Purpose Construct FlightGear animation object

Syntax h = Aero.FlightGearAnimation

Description h = Aero.FlightGearAnimation constructs a FlightGear animation
object. The FlightGear animation object is returned to h.

Constructor Method Description

fganimation Construct FlightGear animation object.

Method
Summary

Method Description

delete Destroy FlightGear animation object.

initialize Set up FlightGear animation object.

play Animate FlightGear flight simulator using given
position/angle time series.

update Update position data to FlightGear animation object.

Property
Summary

Properties Description

TimeseriesSource Specify variable that contains the time series
data.

TimeseriesSource-
Type

Specify the type of time series data stored
in 'TimeseriesSource'. Five values are
available. They are listed in the following table.
The default value is 'Array6DoF'.

TimeseriesReadFcn Specify a function to read the time series data if
'TimeseriesSourceType' is 'Custom'.

TimeScaling Specify the seconds of animation data per
second of wall-clock time. The default ratio is 1.

4-16

Aero.FlightGearAnimation

Properties Description

FramesPerSecond Specify the number of frames per second used to
animate the 'TimeseriesSource'. The default
value is 12 frames per second.

FlightGearVersion Select your FlightGear software version:
'0.9.3', '0.9.8', '0.9.9', '0.9.10', '1.0',
'1.9.1', or '2.0'. The default version is '2.0'.

OutputFileName Specify the name of the output file. The file
name is the name of the command you will
use to start FlightGear with these initial
parameters. The default value is 'runfg.bat'.

FlightGearBase-
Directory

Specify the name of your FlightGear
installation folder. The default value is
'D:\Applications\FlightGear'.

GeometryModelName Specify the name of the folder containing
the desired model geometry in the
FlightGear\data\Aircraft folder. The
default value is 'HL20'.

DestinationIp-
Address

Specify your destination IP address. The default
value is '127.0.0.1'.

DestinationPort Specify your network flight dynamics model
(fdm) port. This destination port should be an
unused port that you can use when you launch
FlightGear. The default value is '5502'.

AirportId Specify the airport ID. The list of supported
airports is available in the FlightGear interface,
under Location. The default value is 'KSFO'.

RunwayId Specify the runway ID. The default value is
'10L'.

InitialAltitude Specify the initial altitude of the aircraft, in
feet. The default value is 7224 feet.

4-17

Aero.FlightGearAnimation

Properties Description

InitialHeading Specify the initial heading of the aircraft, in
degrees. The default value is 113 degrees.

OffsetDistance Specify the offset distance of the aircraft from
the airport, in miles. The default value is 4.72
miles.

OffsetAzimuth Specify the offset azimuth of the aircraft, in
degrees. The default value is 0 degrees.

TStart Specify start time as a double.

TFinal Specify end time as a double.

The time series data, stored in the property 'TimeseriesSource', is
interpreted according to the 'TimeseriesSourceType' property, which
can be one of:

'Timeseries' MATLAB time series data with six
values per time:

lat lon alt phi theta psi

The values are resampled.

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: lat lon
alt

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

4-18

Aero.FlightGearAnimation

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data: time
lat lon alt phi theta psi. If a
double-precision array of 8 or more
columns is in 'TimeseriesSource',
the first 7 columns are used as 6-DoF
data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
lat alt theta. If a double-precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

Examples Construct a FlightGear animation object, h:

h = fganimation

See Also fganimation, generaterunscript, play

4-19

Aero.Geometry

Purpose Construct 3-D geometry for use with animation object

Syntax h = Aero.Geometry

Description h = Aero.Geometry defines a 3-D geometry for use with an animation
object.

This object supports the attachment of transparency data from an Ac3d
file to patch generation.

Constructor
Summary

Constructor Description

Geometry Construct 3-D geometry for use with animation
object.

Method
Summary

Method Description

read Read geometry data using current reader.

Property
Summary

Property Description Values

Name Specify name of
geometry.

string

Source Specify geometry
data source.

string {['Auto'], 'Variable',
'MatFile', 'Ac3dFile', 'Custom'}

Reader Specify geometry
reader.

MATLAB array

4-20

Aero.Geometry

Property Description Values

MATLAB structure with the following
fields

name String that contains
the name of the
geometry being
loaded.

faces See Faces on Patch
Properties in the
MATLAB Function
Reference.

vertices See Vertices on
Patch Properties
in the MATLAB
Function Reference.

cdata See CData on Patch
Properties in the
MATLAB Function
Reference.

FaceVertexColorData Specify the color of
the geometry face
vertex.

alpha See
FaceVertexAlphaData
on Patch
Properties in the
MATLAB Function
Reference.

See Also read

4-21

../../../techdoc/ref/patch_props.html#Faces
../../../techdoc/ref/patch_props.html#Vertices
../../../techdoc/ref/patch_props.html#CData
../../../techdoc/ref/patch_props.html#FaceVertexAlphaData

Aero.Node

Purpose Create node object for use with virtual reality animation

Syntax h = Aero.Node

Description h = Aero.Node creates a node object for use with virtual reality
animation. Typically, you do not need to create a node object with
this method. This is because the .wrl file stores the information for a
virtual reality scene. During the initialization of the virtual reality
animation object, any node with a DEF statement in the specified .wrl
file has a node object created.

Constructor
Summary

Constructor Description

Node Create node object for use with virtual reality
animation.

Method
Summary

Method Description

findstart-
stoptimes

Return start and stop times for time series data.

move Change node translation and rotation.

update Change node position and orientation versus time
data.

4-22

Aero.Node

Property
Summary

Property Description Values

Name Specify name of the
node object.

string

VRNode Return the handle
to the vrnode object
associated with the
node object (see
the Simulink 3D
Animation User’s
Guide).

MATLAB array

CoordtransformFcn Specify a function that
controls the coordinate
transformation.

MATLAB array

TimeseriesSource Specify time series
source.

MATLAB array

Timeseries-
SourceType

Specify the type of time
series data stored in
'TimeseriesSource'.
Five values are
available. They are
listed in the following
table. The default
value is 'Array6DoF'.

string

Timeseries-
ReadFcn

Specify time series
read function.

MATLAB array

The time series data, stored in the property 'TimeseriesSource', is
interpreted according to the 'TimeseriesSourceType' property, which
can be one of:

4-23

Aero.Node

'Timeseries' MATLAB time series data with six
values per time:

lat lon alt phi theta psi

The values are resampled.

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: lat lon
alt

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data: time
lat lon alt phi theta psi. If a
double-precision array of 8 or more
columns is in 'TimeseriesSource',
the first 7 columns are used as 6-DoF
data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
lat alt theta. If a double-precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

4-24

Aero.Viewpoint

Purpose Create viewpoint object for use in virtual reality animation

Syntax h = Aero.Viewpoint

Description h = Aero.Viewpoint creates a viewpoint object for use with virtual
reality animation.

Constructor
Summary

Constructor Description

Viewpoint Create node object for use with virtual reality
animation.

Property
Summary

Property Description Values

Name Specify name of the
node object.

string

Node Specify node object
that contains the
viewpoint node.

MATLAB array

4-25

Aero.VirtualRealityAnimation

Purpose Construct virtual reality animation object

Syntax h = Aero.VirtualRealityAnimation

Description h = Aero.VirtualRealityAnimation constructs a virtual reality
animation object. The animation object is returned to h.

The animation object has the following methods and properties.

Constructor
Summary

Constructor Description

VirtualReality-
Animation

Construct virtual reality animation object.

Method
Summary

Method Description

addNode Add existing node to current virtual reality
world.

addRoute Add VRML ROUTE statement to virtual reality
animation.

addViewpoint Add viewpoint for virtual reality animation.

delete Destroy virtual reality animation object.

initialize Create and populate virtual reality animation
object.

nodeInfo Create list of nodes associated with virtual
reality animation object.

play Animate virtual reality world for given position
and angle in time series data.

removeNode Remove node from virtual reality animation
object.

removeViewpoint Remove viewpoint node from virtual reality
animation.

4-26

Aero.VirtualRealityAnimation

Method Description

saveas Save virtual reality world associated with
virtual reality animation object.

updateNodes Set new translation and rotation of moveable
items in virtual reality animation.

Notes on Aero.VirtualRealityAnimation Methods
Aero.VirtualRealityAnimation methods that change the current virtual
reality world use a temporary .wrl file to manage those changes. These
methods include:

• addNode

• removeNode

• addViewpoint

• removeViewpoint

• addRoute

Be aware of the following behavior:

• After the methods make the changes, they reinitialize the world,
using the information stored in the temporary .wrl file.

• When you delete the virtual reality animation object, this action
deletes the temporary file.

• Use the saveas method to save the temporary .wrl file.

• These methods do not affect user-created .wrl files.

4-27

Aero.VirtualRealityAnimation

Property
Summary

Property Description Values

Name Specify name of the
animation object.

string

VRWorld Returns the vrworld
object associated with
the animation object.

MATLAB array

VRWorldFilename Specify the .wrl file
for the vrworld.

string

VRWorld-
OldFilename

Specify the old .wrl
files for the vrworld.

MATLAB array

VRWorld-
TempFilename

Specify the temporary
.wrl file for the
animation object.

string

VRFigure Returns the vrfigure
object associated with
the animation object.

MATLAB array

Nodes Specify the nodes that
the animation object
contains.

MATLAB array

Viewpoints Specify the viewpoints
that the animation
object contains.

MATLAB array

TimeScaling Specify the time
scaling, in seconds.

double

Tstart Specify the time, in
seconds.

double

TFinal Specify end time, in
seconds.

double

TCurrent Specify current time,
in seconds.

double

4-28

Aero.VirtualRealityAnimation

Property Description Values

FramesPerSecond Specify rate, in frames
per second.

double

ShowSaveWarning Specify save warning
display setting.

double

4-29

airspeed

Purpose Airspeed from velocity

Syntax airspeed = airspeed(velocities)

Description airspeed = airspeed(velocities) computes m airspeeds, airspeed,
from an m-by-3 array of velocities, velocities.

Examples Determine the airspeed for velocity one array:

as = airspeed([84.3905 33.7562 10.1269])

as =

91.4538

Determine the airspeed for velocity for multiple arrays:

as = airspeed([50 20 6; 5 0.5 2])

as =

54.1849
5.4083

See Also alphabeta | correctairspeed | dpressure | machnumber

4-30

alphabeta

Purpose Incidence and sideslip angles

Syntax [incidence sideslip] = alphabeta(velocities)

Description [incidence sideslip] = alphabeta(velocities) computes m
incidence and sideslip angles, incidence and sideslip , between the
velocity vector and the body. velocities is an m-by-3 array of velocities
in body axes. incidence and sideslip are in radians.

Examples Determine the incidence and sideslip angles for velocity for one array:

[alpha beta] = alphabeta([84.3905 33.7562 10.1269])

alpha =

0.1194

beta =

0.3780

Determine the incidence and sideslip angles for velocity for two arrays:

[alpha beta] = alphabeta([50 20 6; 5 0.5 2])

alpha =

0.1194
0.3805

beta =

0.3780
0.0926

4-31

alphabeta

See Also airspeed | machnumber

4-32

angle2dcm

Purpose Create direction cosine matrix from rotation angles

Syntax dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3)
dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3,

rotationSequence)

Description dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3)
calculates the direction cosine matrix given three sets of rotation angles.

dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3,
rotationSequence) calculates the direction cosine matrix using a
rotation sequence.

Input
Arguments

rotationAng1

m-by-1 array of first rotation angles, in radians.

rotationAng2

m-by-1 array of second rotation angles, in radians.

rotationAng3

m-by-1 array of third rotation angles, in radians.

rotationSequence

String that defines rotation sequence. For example, the default
'ZYX' represents a sequence where rotationAng1 is z-axis
rotation, rotationAng2 is y-axis rotation, and rotationAng3 is
x-axis rotation.

'ZYX'
'ZYZ'
'ZXY'
'ZXZ'
'YXZ'
'YXY'
'YZX'
'YZY'

4-33

angle2dcm

'XYZ'
'XZY'
'XYX'
'XZX'
'ZYX' (default)

Output
Arguments

dcm

3-by-3-by-m matrix containing m direction cosine matrices.

Examples Determine the direction cosine matrix from rotation angles:

yaw = 0.7854;
pitch = 0.1;
roll = 0;
dcm = angle2dcm(yaw, pitch, roll)

dcm =

0.7036 0.7036 -0.0998
-0.7071 0.7071 0
0.0706 0.0706 0.9950

Determine the direction cosine matrix from rotation angles and rotation
sequence:

yaw = [0.7854 0.5];
pitch = [0.1 0.3];
roll = [0 0.1];
dcm = angle2dcm(pitch, roll, yaw, 'YXZ')

dcm(:,:,1) =

0.7036 0.7071 -0.0706
-0.7036 0.7071 0.0706
0.0998 0 0.9950

4-34

angle2dcm

dcm(:,:,2) =

0.8525 0.4770 -0.2136
-0.4321 0.8732 0.2254
0.2940 -0.0998 0.9506

See Also angle2quat | dcm2angle | dcm2quat | quat2dcm | quat2angle

4-35

angle2quat

Purpose Convert rotation angles to quaternion

Syntax quaternion = angle2quat(rotationAng1,rotationAng2,
rotationAng3)

quaternion = angle2quat(rotationAng1,rotationAng2,
rotationAng3,rotationSequence)

Description quaternion =
angle2quat(rotationAng1,rotationAng2,rotationAng3) calculates
the quaternion for three rotation angles.

quaternion =
angle2quat(rotationAng1,rotationAng2,rotationAng3,rotationSequence)
calculates the quaternion using a rotation sequence.

Input
Arguments

rotationAng1

m-by-1 array of first rotation angles, in radians.

rotationAng2

m-by-1 array of second rotation angles, in radians.

rotationAng3

m-by-1 array of third rotation angles, in radians.

rotationSequence

String that defines rotation sequence. For example, the default
'ZYX' represents a sequence where rotationAng1 is z-axis
rotation, rotationAng2 is y-axis rotation, and rotationAng3 is
x-axis rotation.

'ZYX'
'ZYZ'
'ZXY'
'ZXZ'
'YXZ'
'YXY'

4-36

angle2quat

'YZX'
'YZY'
'XYZ'
'XZY'
'XYX'
'XZX'
'ZYX' (default)

Output
Arguments

quaternion

m-by-4 matrix containing m quaternions. quaternion has its
scalar number as the first column.

Examples Determine the quaternion from rotation angles:

yaw = 0.7854;
pitch = 0.1;
roll = 0;
q = angle2quat(yaw, pitch, roll)
q =

0.9227 -0.0191 0.0462 0.3822

Determine the quaternion from rotation angles and rotation sequence:

yaw = [0.7854 0.5];
pitch = [0.1 0.3];
roll = [0 0.1];
q = angle2quat(pitch, roll, yaw, 'YXZ')
q =

0.9227 0.0191 0.0462 0.3822
0.9587 0.0848 0.1324 0.2371

See Also angle2dcm | dcm2angle | dcm2quat | quat2angle | quat2dcm

4-37

atmoscoesa

Purpose Use 1976 COESA model

Syntax [T, a, P, Rho] = atmoscoesa(height, action)

Description Committee on Extension to the Standard Atmosphere has the
acronym COESA. [T, a, P, Rho] = atmoscoesa(height, action)
implements the mathematical representation of the 1976 COESA
United States standard lower atmospheric values. These values are
absolute temperature, pressure, density, and speed of sound for the
input geopotential altitude.

Below the geopotential altitude of 0 m (0 feet) and above the
geopotential altitude of 84,852 m (approximately 278,386 feet), the
function extrapolates values. It extrapolates temperature values
linearly and pressure values logarithmically.

Input
Arguments

height

Array of m-by-1 geopotential heights, in meters.

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning' (default)
'None'

Output
Arguments

T

Array of m-by-1 temperatures, in kelvin.

a

Array of m-by-1 speeds of sound, in meters per second. The
function calculates speed of sound using a perfect gas relationship.

P

Array of m-by-1 pressures, in pascal.

Rho

4-38

atmoscoesa

Array of m-by-1 densities, in kilograms per meter cubed. The
function calculates density using a perfect gas relationship.

Examples Calculate the COESA model at 1000 m with warnings for out-of-range
inputs:

[T, a, P, rho] = atmoscoesa(1000)

T =

281.6500

a =

336.4341

P =

8.9875e+004

rho =

1.1116

Calculate the COESA model at 1000, 11,000, and 20,000 m with errors
for out-of-range inputs:

[T, a, P, rho] = atmoscoesa([1000 11000 20000], 'Error')

T =

281.6500 216.6500 216.6500

a =

336.4341 295.0696 295.0696

4-39

atmoscoesa

P =

1.0e+004 *

8.9875 2.2632 0.5475

rho =

1.1116 0.3639 0.0880

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscira | atmosisa | atmoslapse | atmosnonstd | atmospalt

4-40

atmoscira

Purpose Use COSPAR International Reference Atmosphere 1986 model

Syntax [T altitude zonalWind] = atmoscira(latitude, ctype, coord,
mtype, month, action)

Description [T altitude zonalWind] = atmoscira(latitude, ctype, coord,
mtype, month, action) implements the mathematical representation
of the Committee on Space Research (COSPAR) International Reference
Atmosphere (CIRA) from 1986 model. The CIRA 1986 model provides
a mean climatology. The mean climatology consists of temperature,
zonal wind, and geopotential height or pressure. It encompasses nearly
pole-to-pole coverage (80 degrees S to 80 degrees N) for 0 km to 120 km.
This provision also encompasses the troposphere, middle atmosphere,
and lower thermosphere. Use this mathematical representation as a
function of pressure or geopotential height.

This function uses a corrected version of the CIRA data files provided
by J. Barnett in July 1990 in ASCII format.

This function has the limitations of the CIRA 1986 model and limits the
values for the CIRA 1986 model.

The CIRA 1986 model limits values to the regions of 80 degrees S to 80
degrees N on Earth. It also limits geopotential heights from 0 km to
120 km. In each monthly mean data set, the model omits values at 80
degrees S for 101,300 pascal or 0 m. It omits these values because these
levels are within the Antarctic land mass. For zonal mean pressure in
constant altitude coordinates, pressure data is not available below 20
km. Therefore, this value is the bottom level of the CIRA climatology.

Input
Arguments

latitude

Array of m geopotential heights, in meters.

ctype

String that defines representation of coordinate type. Specify:

4-41

atmoscira

'Pressure' Pressure in pascal

'GPHeight' Geopotential height in meters

coord

Depending on the value of ctype, this argument specifies one
of the following arrays:

m Pressures in pascal

m Geopotential height in meters

mtype

String that selects one of the following mean value types:

'Monthly'
(default)

Monthly values.

'Annual' Annual values. Valid when ctype has a value
of 'Pressure'.

month

Scalar value that selects the month in which the model takes the
mean values. This argument applies only when mtype has a value
of 'Monthly'.

1 (default) January

2 February

3 March

4 April

5 May

6 June

7 July

4-42

atmoscira

8 August

9 September

10 October

11 November

12 December

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning' (default)
'None'

Output
Arguments

T

Array of temperatures:

If m is 'Monthly' Array of m temperatures, in kelvin

If mtype is 'Annual' Array of m-by-7 values:

• Annual mean temperature in
kelvin

• Annual temperature cycle
amplitude in kelvin

• Annual temperature cycle phase in
month of maximum

• Semiannual temperature cycle
amplitude in kelvin

• Semiannual temperature cycle
phase in month of maximum

• Terannual temperature cycle
amplitude in kelvin

4-43

atmoscira

• Terannual temperature cycle phase
in month of maximum

altitude

If mtype is 'Monthly', an array of m geopotential heights or m
air pressures:

If ctype is 'Pressure' Array m geopotential heights

If ctype is 'GPHeight' Array m air pressure

If mtype is 'Annual', an array of m-by-7 values for geopotential
heights. The function defines this array only for the northern
hemisphere (latitude is greater than 0).

• Annual mean geopotential heights in meters

• Annual geopotential heights cycle amplitude in meters

• Annual geopotential heights cycle phase in month of maximum

• Semiannual geopotential heights cycle amplitude in meters

• Semiannual geopotential heights cycle phase in month of
maximum

• Terannual geopotential heights cycle amplitude in meters

• Terannual geopotential heights cycle phase in month of
maximum

zonalWind

Array of zonal winds:

4-44

atmoscira

If mtype is 'Monthly' Array in meters per second.

If mtype is 'Annual' Array of m-by-7 values:

• Annual mean zonal winds in meters
per second

• Annual zonal winds cycle amplitude
in meters per second

• Annual zonal winds cycle phase in
month of maximum

• Semiannual zonal winds cycle
amplitude in meters per second

• Semiannual zonal winds cycle
phase in month of maximum

• Terannual zonal winds cycle
amplitude in meters per second

• Terannual zonal winds cycle phase
in month of maximum

Examples Using the CIRA 1986 model at 45 degrees latitude and 101,300 pascal
for January with out-of-range actions generating warnings, calculate
the mean monthly values. Calculate values for temperature (T),
geopotential height (alt), and zonal wind (zwind).

[T alt zwind] = atmoscira(45, 'Pressure', 101300)
T =

280.6000
alt =

-18
zwind =

3.3000

4-45

atmoscira

Using the CIRA 1986 model at 45 degrees latitude and 20,000 m for
October with out-of-range actions generating warnings, calculate the
mean monthly values. Calculate values for temperature (T), pressure
(pres), and zonal wind (zwind).

[T pres zwind] = atmoscira(45, 'GPHeight', 20000, 'Monthly', 10)

T =

215.8500

pres =

5.5227e+003

zwind =

9.5000

Use the CIRA 1986 model at 45 and –30 degrees latitude and 20,000
m for October with out-of-range actions generating errors. Calculate
values for temperature (T), pressure (pres), and zonal wind (zwind).

[T pres zwind] = atmoscira([45 -30], 'GPHeight', 20000, 10, 'error')

T =

215.8500 213.9000

pres =

1.0e+003 *

5.5227 5.6550

zwind =

9.5000 4.3000

For September, with out-of-range actions generating warnings, use
the CIRA 1986 model at 45 degrees latitude and –30 degrees latitude.
Also use the model at 2000 pascal and 101,300 pascal. Calculate mean
monthly values for temperature (T), geopotential height (alt), and
zonal wind (zwind).

[T alt zwind] = atmoscira([45 -30], 'Pressure', [2000 101300], 9)

T =

223.5395 290.9000

4-46

atmoscira

alt =

1.0e+004 *

2.6692 0.0058

zwind =

0.6300 -1.1000

Using the CIRA 1986 model at 45 degrees latitude and 2000 pascal
with out-of-range actions generating warnings, calculate annual values.
Calculate values for temperature (T), geopotential height (alt), and
zonal wind (zwind).

[T alt zwind] = atmoscira(45, 'Pressure', 2000, 'Annual')

T =

221.9596 5.0998 6.5300 1.9499 1.3000 1.0499 1.3000

alt =

1.0e+004 *

2.6465 0.0417 0.0007 0.0087 0.0001 0.0015 0.0002

zwind =

4.6099 14.7496 0.6000 1.6499 4.6000 0.5300 1.4000

References Fleming, E. L., Chandra, S., Shoeberl, M. R., Barnett, J. J., Monthly
Mean Global Climatology of Temperature, Wind, Geopotential Height
and Pressure for 0-120 km, NASA TM100697, February 1988

http://modelweb.gsfc.nasa.gov/atmos/cospar1.html

See Also atmoscoesa | atmosisa | atmoslapse | atmosnonstd |
atmosnrlmsise00 | atmospalt

4-47

http://modelweb.gsfc.nasa.gov/atmos/cospar1.html

atmosisa

Purpose Use International Standard Atmosphere model

Syntax [T, a, P, rho] = atmosisa(height)

Description [T, a, P, rho] = atmosisa(height) implements the mathematical
representation of the International Standard Atmosphere values for
ambient temperature, pressure, density, and speed of sound for the
input geopotential altitude.

This function assumes that below the geopotential altitude of 0 km and
above the geopotential altitude of the tropopause, temperature and
pressure values are held.

Input
Arguments

height

Array of m-by-1 geopotential heights, in meters.

Output
Arguments

T

Array of m temperatures, in kelvin.

a

Array of m speeds of sound, in meters per second. The function
calculates speed of sound using a perfect gas relationship.

rho

Array of m densities, in kilograms per meter cubed. The function
calculates density using a perfect gas relationship.

P

Array of m pressures, in pascal.

Examples Calculate the International Standard Atmosphere at 1000 m:

[T, a, P, rho] = atmosisa(1000)

T =

4-48

atmosisa

281.6500

a =

336.4341

P =

8.9875e+004

rho =

1.1116

Calculate the International Standard Atmosphere at 1000, 11,000,
and 20,000 m:

[T, a, P, rho] = atmosisa([1000 11000 20000])

T =

281.6500 216.6500 216.6500

a =

336.4341 295.0696 295.0696

P =

1.0e+004 *

8.9875 2.2632 0.5475

rho =

1.1116 0.3639 0.0880

4-49

atmosisa

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscira | atmoscoesa | atmoslapse | atmosnonstd | atmospalt

4-50

atmoslapse

Purpose Use Lapse Rate Atmosphere model

Syntax [T, a, P, rho] = atmoslapse(height, g, heatRatio,
characteristicGasConstant, lapseRate, heightTroposphere,
heightTropopause, density0, pressure0, temperature0)

Description [T, a, P, rho] = atmoslapse(height, g, heatRatio,
characteristicGasConstant, lapseRate, heightTroposphere,
heightTropopause, density0, pressure0, temperature0)
implements the mathematical representation of the lapse rate
atmospheric equations for ambient temperature, pressure, density, and
speed of sound for the input geopotential altitude. To customize this
atmospheric model, specify the atmospheric properties in the function
input.

The function holds temperature and pressure values below the
geopotential altitude of 0 km and above the geopotential altitude of
the tropopause.

Input
Arguments

height

Array of m-by-1 geopotential heights, in meters.

g

Scalar of acceleration due to gravity, in meters per second squared.

heatRatio

Scalar of specific heat ratio.

characteristicGasConstant

Scalar of characteristic gas constant, in joule per kilogram-kelvin.

lapseRate

Scalar of lapse rate, in kelvin per meter.

heightTroposphere

Scalar of height of troposphere, in meters.

4-51

atmoslapse

heightTropopause

Scalar of height of tropopause, in meters.

density0

Scalar of air density at mean sea level, in kilograms per meter
cubed.

pressure0

Scalar of static pressure at mean sea level, in pascal.

temperature0

Scalar of absolute temperature at mean sea level, in kelvin.

Output
Arguments

T

Array of m-by-1 temperatures, in kelvin.

a

Array of m-by-1 speeds of sound, in meters per second. The
function calculates speed of sound using a perfect gas relationship.

P

Array of m-by-1 pressures, in pascal.

rho

Array of m-by-1 densities, in kilograms per meter cubed. The
function calculates density using a perfect gas relationship.

Examples Calculate the atmosphere at 1000 m with the International Standard
Atmosphere input values:

[T, a, P, rho] = atmoslapse(1000, 9.80665, 1.4, 287.0531, 0.0065, ...

11000, 20000, 1.225, 101325, 288.15)

T =

281.6500

4-52

atmoslapse

a =

336.4341

P =

8.9875e+004

rho =

1.1116

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscira | atmoscoesa | atmosisa | atmosnonstd | atmospalt

4-53

atmosnonstd

Purpose Use climatic data from MIL-STD-210 or MIL-HDBK-310

Syntax [T, a, P, rho] = atmosnonstd(height, atmosphericType,
extremeParameter, frequency, extremeAltitude, action,
specification)

Description [T, a, P, rho] = atmosnonstd(height, atmosphericType,
extremeParameter, frequency, extremeAltitude, action,
specification) implements a portion of the climatic data of the
MIL-STD-210C or MIL-HDBK-310 worldwide air environment to
80 km geometric (or approximately 262,000 feet geometric). This
implementation provides absolute temperature, pressure, density, and
speed of sound for the input geopotential altitude.

This function holds all values below the geometric altitude of 0 m (0
feet) and above the geometric altitude of 80,000 m (approximately
262,000 feet). The envelope atmospheric model has exceptions where
values are held below the geometric altitude of 1 km (approximately
3281 feet). It also has exceptions above the geometric altitude of 30,000
m (approximately 98,425 feet). These exceptions are due to lack of data
in MIL-STD-210 or MIL-HDBK-310 for these conditions.

In general, this function interpolates temperature values linearly and
density values logarithmically. It calculates pressure and speed of
sound using a perfect gas relationship. The envelope atmospheric model
has exceptions where the extreme value is the only value provided
as an output. In these cases, the function interpolates pressure
logarithmically. These envelope atmospheric model exceptions apply
to all cases of high and low pressure, high and low temperature, and
high and low density. These exceptions exclude the extreme values and
1% frequency of occurrence. These exceptions are due to lack of data in
MIL-STD-210 or MIL-HDBK-310 for these conditions.

A limitation is that MIL-STD-210 and MIL-HDBK-310 exclude from
consideration climatic data for the region south of 60 degrees S latitude.

This function uses the metric version of data from the MIL-STD-210
or MIL-HDBK-310 specifications. A limitation is some inconsistent
data between the metric and English data. Locations where these

4-54

atmosnonstd

inconsistencies occur are within the envelope data for low density, low
temperature, high temperature, low pressure, and high pressure. The
most noticeable differences occur in the following values:

• For low density envelope data with 5% frequency, the density values
in metric units are inconsistent at 4 km and 18 km. In addition, the
density values in English units are inconsistent at 14 km.

• For low density envelope data with 10% frequency, the density values
in metric units are inconsistent at 18 km. In addition, the density
values in English units are inconsistent at 14 km.

• For low density envelope data with 20% frequency, the density values
in English units are inconsistent at 14 km.

• For high-pressure envelope data with 10% frequency, the pressure
values at 8 km are inconsistent.

Input
Arguments

height

Array of m-by-1 geopotential heights, in meters.

atmosphericType

String selecting the representation of 'Profile' or 'Envelope'
for the atmospheric data:

'Profile' Is the realistic atmospheric profiles associated
with extremes at specified altitudes. Use
'Profile' for simulation of vehicles vertically
traversing the atmosphere, or when you need the
total influence of the atmosphere.

'Envelope' Uses extreme atmospheric values at each
altitude. Use 'Envelope' for vehicles traversing
the atmosphere horizontally, without much
change in altitude.

extremeParameter

4-55

atmosnonstd

String selecting the atmospheric parameter that is the extreme
value. Atmospheric parameters that you can specify are:

'High temperature'
'Low temperature'
'High density'
'Low density'
'High pressure', available only if atmosphericType is
'Envelope'
'Low pressure', available only if atmosphericType is
'Envelope'

frequency

String selecting percent of time that extreme values would occur.
When using atmosphericType of 'Envelope' and frequency of
'5%', '10%’, and '20%', only the extreme* parameter that you
specify (temperature, density, or pressure) has a valid output. All
other parameter outputs are zero.

'Extreme values', available only if atmosphericType is
'Envelope'
'1%'
'5%', available only if atmosphericType is 'Envelope'
'10%
'20%', available only if atmosphericType is 'Envelope'

extremeAltitude

Scalar value, in kilometers, selecting geometric altitude at which
the extreme values occur. extremeAltitude applies only when
atmosphericType is 'Profile'.

5 16404 ft

10 32808 ft

20 65617 ft

4-56

atmosnonstd

30 98425 ft

40 131234 ft

action

String that defines action for out-of-range input:

'Error'
'Warning' (default)
'None'

specification

String specifying the atmosphere model:

'210c' MIL-STD-210C

'310' MIL-HDBK-310 (default)

Output
Arguments

T

Array of m-by-1 temperatures, in kelvin. This function interpolates
temperature values linearly.

a

Array of m-by-1 speeds of sound, in meters per second. This
function calculates speed of sound using a perfect gas relationship.

P

Array of m-by-1 pressures, in pascal. This function calculates
pressure using a perfect gas relationship.

rho

Array of m-by-1 densities, in kilograms per meter cubed. This
function interpolates density values logarithmically.

4-57

atmosnonstd

Examples Calculate the nonstandard atmosphere profile. Use high density
occurring 1% of the time at 5 km from MIL-HDBK-310 at 1000 m with
warnings for out-of-range inputs:

[T, a, P, rho] = atmosnonstd(1000,'Profile','High density','1%',5)

T =

248.1455

a =

315.7900

P =

8.9893e+004

rho =

1.2620

Calculate the nonstandard atmosphere envelope with high pressure.
Assume that high pressure occurs 20% of the time from MIL-STD-210C
at 1000, 11,000, and 20,000 m with errors for out-of-range inputs:

[T, a, P, rho] = atmosnonstd([1000 11000 20000],'Envelope', ...

'High pressure','20%','Error','210c')

T =

0 0 0

a =

0 0 0

4-58

atmosnonstd

P =

1.0e+004 *

9.1598 2.5309 0.6129

rho =

0 0 0

References Global Climatic Data for DevelopingMilitary Products (MIL-STD-210C),
9 January 1987, Department of Defense, Washington, D.C.

Global Climatic Data for Developing Military Products
(MIL-HDBK-310), 23 June 1997, Department of Defense, Washington,
D.C.

See Also atmoscira | atmoscoesa | atmosisa | atmoslapse | atmospalt

4-59

atmosnrlmsise00

Purpose Implement mathematical representation of 2001 United States Naval
Research Laboratory Mass Spectrometer and Incoherent Scatter Radar
Exosphere

Syntax [T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds)

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, localApparentSolarTime)

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, f107Average, f107Daily,
magneticIndex)

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, flags)

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, otype)

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, action)

Description [T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds) implements the mathematical
representation of the 2001 United States Naval Research Laboratory
Mass Spectrometer and Incoherent Scatter Radar Exosphere
(NRLMSISE-00). NRLMSISE-00 calculates the neutral atmosphere
empirical model from the surface to lower exosphere (0 m to 1,000,000
m). Optionally, it performs this calculation including contributions from
anomalous oxygen that can affect satellite drag above 500,000 m.

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, localApparentSolarTime) specifies
an array of m local apparent solar time (hours).

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, f107Average, f107Daily,
magneticIndex) specifies arrays of m 81 day average of F10.7 flux
(centered on doy), m-by-1 daily F10.7 flux for previous day, and m-by-7 of
magnetic index information.

4-60

atmosnrlmsise00

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, flags) specifies an array of 23 to
enable or disable particular variations for the outputs.

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, otype) specifies a string for total
mass density output.

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, action) specifies out-of-range input
action.

This function has the limitations of the NRLMSISE-00 model. For more
information, see the NRLMSISE-00 model documentation.

The NRLMSISE-00 model uses UTseconds, localApparentSolarTime,
and longitude independently. These arguments are not of equal
importance for every situation. For the most physically realistic
calculation, choose these three variables to be consistent by default:

localApparentSolarTime = UTseconds/3600 + longitude/15

If available, you can include departures from this equation for
localApparentSolarTime, but they are of minor importance.

Input
Arguments

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning' (default)
'None'

altitude

Array of m-by-1 altitudes, in meters.

dayOfYear

Array m-by-1 day of year.

f107Average

4-61

atmosnrlmsise00

Array of m-by-1 81 day average of F10.7 flux (centered on day
of year (dayOfYear)). If you specifyf107Average, you must
also specify f107Daily and magneticIndex. The effects of
f107Average are not large or established below 80,000 m;
therefore, the default value is 150.

These f107Average values correspond to the 10.7 cm radio flux
at the actual distance of the Earth from the Sun. The
f107Average values do not correspond to the radio flux at 1
AU. The following site provides both classes of values:
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

See the limitations in “Description” on page 4-60 for more
information.

f107Daily

Array of m-by-1 daily F10.7 flux for previous day. If you
specify f107Daily, you must also specify f107Average and
magneticIndex. The effects of f107Daily are not large or
established below 80,000 m; therefore, the default value is 150.

These f107Daily values correspond to the 10.7 cm radio flux
at the actual distance of the Earth from the Sun. The
f107Daily values do not correspond to the radio flux at 1
AU. The following site provides both classes of values:
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

See the limitations in “Description” on page 4-60 for more
information.

flags

Array of 23 to enable or disable particular variations for the
outputs. If flags array length, m, is 23 and you have not specified
all available inputs, this function assumes that flags is set.

The flags, associated with the flags input, enable or disable
particular variations for the outputs:

4-62

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

atmosnrlmsise00

Field Description

Flags(1) F10.7 effect on mean

Flags(2) Independent of time

Flags(3) Symmetrical annual

Flags(4) Symmetrical semiannual

Flags(5) Asymmetrical annual

Flags(6) Asymmetrical semiannual

Flags(7) Diurnal

Flags(8) Semidiurnal

Flags(9) Daily AP. If you set this field to -1, the block uses
the entire matrix of magnetic index information
(APH) instead of APH(:,1).

Flags(10) All UT, longitudinal effects

Flags(11) Longitudinal

Flags(12) UT and mixed UT, longitudinal

Flags(13) Mixed AP, UT, longitudinal

Flags(14) Terdiurnal

Flags(15) Departures from diffusive equilibrium

Flags(16) All exospheric temperature variations

Flags(17) All variations from 120,000 meter temperature
(TLB)

Flags(18) All lower thermosphere (TN1) temperature
variations

Flags(19) All 120,000 meter gradient (S) variations

Flags(20) All upper stratosphere (TN2) temperature variations

Flags(21) All variations from 120,000 meter values (ZLB)

4-63

atmosnrlmsise00

Field Description

Flags(22) All lower mesosphere temperature (TN3) variations

Flags(23) Turbopause scale height variations

latitude

Array of m-by-1 geodetic latitudes, in meters.

longitude

Array of m-by-1 longitudes, in degrees.

localApparentSolarTime

Array of m-by-1 local apparent solar time (hours). To
obtain a physically realistic value, the function sets
localApparentSolarTime to (sec/3600 + lon/15) by default.
See “Description” on page 4-60 for more information.

magneticIndex

An array of m-by-7 of magnetic index information. If you
specify magneticIndex, you must also specify f107Average and
f107Daily. This information consists of:

Daily magnetic index (AP)
3 hour AP for current time
3 hour AP for 3 hours before current time
3 hour AP for 6 hours before current time
3 hour AP for 9 hours before current time
Average of eight 3 hour AP indices from 12 to 33 hours before
current time
Average of eight 3 hour AP indices from 36 to 57 hours before
current time

The effects of daily magnetic index are not large or established
below 80,000 m. As a result, the function sets the default value
to 4. See the limitations in “Description” on page 4-60 for more
information.

4-64

atmosnrlmsise00

otype

String for total mass density output:

`Oxygen' Total mass density outputs include anomalous
oxygen number density.

`NoOxygen' Total mass density outputs do not include
anomalous oxygen number density.

UTseconds

Array of m-by-1 seconds in day in universal time (UT)

year

This function ignores the value of year.

Output
Arguments

T

Array of N-by-2 values of temperature, in kelvin. The first column
is exospheric temperature, in kelvin. The second column is
temperature at altitude, in kelvin.

rho

An array of N-by-9 values of densities (kg/m3 or 1/m3) in selected
density units. The column order is:

Density of He, in 1/m3

Density of O, in 1/m3

Density of N2, in 1/m3

Density of O2, in 1/m3

Density of Ar, in 1/m3

Total mass density, in 1/kg3

Density of H, in 1/m3

Density of N, in 1/m3

Anomalous oxygen number density, in 1/m3

density(6), total mass density, is the sum of the mass densities of
He, O, N2, O2, Ar, H, and N. Optionally, density(6) can include

4-65

atmosnrlmsise00

the mass density of anomalous oxygen making density(6), the
effective total mass density for drag.

Examples Calculate the temperatures, densities not including anomalous oxygen
using the NRLMSISE-00 model at 10,000 m, 45 degrees latitude, -50
degrees longitude. This calculation uses the date January 4, 2007 at 0
UT. It uses default values for flux, magnetic index data, and local solar
time with out-of-range actions generating warnings:

[T rho] = atmosnrlmsise00(10000, 45, -50, 2007, 4, 0)

T =

281.6500 216.6500 216.6500

a =

336.4341 295.0696 295.0696

P =

1.0e+004 *

8.9875 2.2632 0.5475

rho =

1.1116 0.3639 0.0880

>> [T rho] = atmosnrlmsise00(10000, 45, -50, 2007, 4, 0)

T =

1.0e+003 *

1.0273 0.2212

4-66

atmosnrlmsise00

rho =

1.0e+024 *

0.0000 0 6.6824 1.7927 0.0799 0.0000 0 0 0

Calculate the temperatures, densities not including anomalous oxygen
using the NRLMSISE-00 model. Use the model at 10,000 m, 45 degrees
latitude, –50 degrees longitude and 25,000 m, 47 degrees latitude, –55
degrees longitude.

This calculation uses the date January 4, 2007 at 0 UT. It uses
default values for flux, magnetic index data, and local solar time with
out-of-range actions generating warnings:

[T rho] = atmosnrlmsise00([10000; 25000], [45; 47], ...

[-50; -55], [2007; 2007], [4; 4], [0; 0])

[-50; -55], [2007; 2007], [4; 4], [0; 0])

T =

1.0e+003 *

1.0273 0.2212

1.0273 0.2116

rho =

1.0e+024 *

0.0000 0 6.6824 1.7927 0.0799 0.0000 0 0 0

0.0000 0 0.6347 0.1703 0.0076 0.0000 0 0 0

4-67

atmosnrlmsise00

Calculate the temperatures, densities including anomalous oxygen
using the NRLMSISE-00 model at 10,000 m, 45 degrees latitude, –50
degrees longitude. This calculation uses the date January 4, 2007 at 0
UT. It uses default values for flux, magnetic index data, and local solar
time with out-of-range actions generating errors:

[T rho] = atmosnrlmsise00(10000, 45, -50, 2007, ...

4, 0, 'Oxygen', 'Error')

T =

1.0e+003 *

1.0273 0.2212

rho =

1.0e+024 *

0.0000 0 6.6824 1.7927 0.0799 0.0000 0 0 0

Calculate the temperatures, densities including anomalous oxygen
using the NRLMSISE-00 model at 100,000 m, 45 degrees latitude, –50
degrees longitude. This calculation uses the date January 4, 2007 at
0 UT. It uses defined values for flux, and magnetic index data, and
default local solar time. It specifies that the out-of-range action is to
generate no message:

aph = [17.375 15 20 15 27 (32+22+15+22+9+18+12+15)/8 (39+27+9+32+39+9+7+12)/8]

f107 = 87.7

nov_6days = [78.6 78.2 82.4 85.5 85.0 84.1]

dec_31daymean = 84.5

jan_31daymean = 83.5

feb_13days = [89.9 90.3 87.3 83.7 83.0 81.9 82.0 78.4 76.7 75.9 74.7 73.6 72.7]

f107a = (sum(nov_6days) + sum(feb_13days) + (dec_31daymean + jan_31daymean)*31)/81

4-68

atmosnrlmsise00

flags = ones(1,23)

flags(9) = -1

[T rho] = atmosnrlmsise00(100000, 45, -50, 2007, 4, 0, f107a, f107, ...

aph, flags, 'Oxygen', 'None')

aph =

17.3750 15.0000 20.0000 15.0000 27.0000 18.1250 21.7500

f107 =

87.7000

nov_6days =

78.6000 78.2000 82.4000 85.5000 85.0000 84.1000

dec_31daymean =

84.5000

jan_31daymean =

83.5000

feb_13days =

Columns 1 through 10

89.9000 90.3000 87.3000 83.7000 83.0000 81.9000 82.0000 78.4000 76.7000 75.9000

Columns 11 through 13

4-69

atmosnrlmsise00

74.7000 73.6000 72.7000

f107a =

83.3568

flags =

Columns 1 through 17

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Columns 18 through 23

1 1 1 1 1 1

flags =

Columns 1 through 17

1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1

Columns 18 through 23

1 1 1 1 1 1

T =

1.0e+003 *

1.0273 0.1917

4-70

atmosnrlmsise00

rho =

1.0e+018 *

0.0001 0.4241 7.8432 1.9721 0.0808 0.0000 0.0000 0.0000 0.0000

References http://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html

See Also atmoscira

4-71

http://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html

atmospalt

Purpose Calculate pressure altitude based on ambient pressure

Syntax pressureAltitude = atmospalt(pressure, action)

Description pressureAltitude = atmospalt(pressure, action) computes the
pressure altitude based on ambient pressure. Pressure altitude is
the altitude with specified ambient pressure in the 1976 Committee
on Extension to the Standard Atmosphere (COESA) United States
standard. Pressure altitude is the same as the mean sea level (MSL)
altitude.

This function extrapolates altitude values logarithmically below the
pressure of 0.3961 Pa (approximately 0.00006 psi) and above the
pressure of 101,325 Pa (approximately 14.7 psi).

This function assumes that air is dry and an ideal gas.

Input
Arguments

pressure

Array of m-by-1 ambient pressures, in pascal.

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning' (default)
'None'

Output
Arguments

pressureAltitude

Array of m-by-1 pressure altitudes or MSL altitudes, in meters.

Examples Calculate the pressure altitude at a static pressure of 101,325 Pa with
warnings for out-of-range inputs:

h = atmospalt(101325)

h =

4-72

atmospalt

0

Calculate the pressure altitude at static pressures of 101,325 Pa and
26,436 Pa with errors for out-of-range inputs:

h = atmospalt([101325 26436], 'Error')

h =

1.0e+004 *

0 1.0000

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscira | atmoscoesa | atmosisa | atmoslapse | atmosnonstd

4-73

Body (Aero.Body)

Purpose Construct body object for use with animation object

Syntax h = Aero.Body

Description h = Aero.Body constructs a body for an animation object. The
animation object is returned in h. To use the Aero.Body object, you
typically:

1 Create the animation body.

2 Configure or customize the body object.

3 Load the body.

4 Generate patches for the body (requires an axes from a figure).

5 Set the source for the time series data.

6 Move or update the body.

The animation object has the following properties:

By default, an Aero.Body object natively uses aerospace body
coordinates for the body geometry and the time series data. Convert
time series data from other coordinate systems on the fly by registering
a different CoordTransformFcn function.

See Aero.Body for further details.

See Also Aero.Body

4-74

Camera (Aero.Camera)

Purpose Construct camera object for use with animation object

Syntax h = Aero.Camera

Description h = Aero.Camera constructs a camera object h for use with an
animation object. The camera object uses the registered coordinate
transform. By default, this is an aerospace body coordinate system.
Axes of custom coordinate systems must be orthogonal.

The animation object has the following properties:

By default, an Aero.Body object natively uses aerospace body
coordinates for the body geometry and the time series data. Convert
time series data from other coordinate systems on the fly by registering
a different CoordTransformFcn function.

See Aero.Camera for further details.

See Also Aero.Camera

4-75

ClearTimer (Aero.FlightGearAnimation)

Purpose Clear and delete timer for animation of FlightGear flight simulator

Syntax ClearTimer(h)
h.ClearTimer

Description ClearTimer(h) and h.ClearTimer clear and delete the MATLAB timer
for the animation of the FlightGear flight simulator.

Examples Clear and delete the MATLAB timer for animation of the FlightGear
animation object, h:

h = Aero.FlightGearAnimation
h.SetTimer
h.ClearTimer
h.SetTimer('FGTimer')

See Also SetTimer

4-76

convacc

Purpose Convert from acceleration units to desired acceleration units

Syntax convertedValues = convacc(valuesToConvert, inputAccelUnits,
outputAccelUnits)

Description convertedValues = convacc(valuesToConvert, inputAccelUnits,
outputAccelUnits) computes the conversion factor from specified
input acceleration units to specified output acceleration units. It then
applies the conversion factor to the input to produce the output in the
desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputAccelUnits to outputAccelUnits.

inputAccelUnits

Specified input acceleration units, as strings. Supported unit
strings are:

'ft/s^2' Feet per second squared

'm/s^2' Meters per second squared

'km/s^2' Kilometers per second squared

'in/s^2' Inches per second squared

'km/h-s' Kilometers per hour per second

'mph/s' Miles per hour per second

'G''s' g-units

outputAccelUnits

Specified output acceleration units, as strings. Supported unit
strings are:

4-77

convacc

'ft/s^2' Feet per second squared

'm/s^2' Meters per second squared

'km/s^2' Kilometers per second squared

'in/s^2' Inches per second squared

'km/h-s' Kilometers per hour per second

'mph/s' Miles per hour per second

'G''s' g-units

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three accelerations from feet per second squared to meters
per second squared:

a = convacc([3 10 20],'ft/s^2','m/s^2')

a =

0.9144 3.0480 6.0960

See Also convang | convangacc | convangvel | convdensity | convforce |
convlength | convmass | convpres | convtemp | convvel

4-78

convang

Purpose Convert from angle units to desired angle units

Syntax convertedValues = convang(valuesToConvert, inputAngleUnits,
outputAngleUnits)

Description convertedValues = convang(valuesToConvert, inputAngleUnits,
outputAngleUnits) computes the conversion factor from specified
input angle units to specified output angle units. It then applies the
conversion factor to the input to produce the output in the desired units.
inputAngleUnits and outputAngleUnits are strings.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values the function is to
convert. All values must have the same unit conversions from
inputAngleUnits to outputAngleUnits.

inputAngleUnits

Specified input angle units, as strings. Supported unit strings are:

'deg' Degrees

'rad' Radians

'rev' Revolutions

outputAngleUnits

Specified output angle units, as strings. Supported unit strings
are:

'deg' Degrees

'rad' Radians

'rev' Revolutions

4-79

convang

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three angles from degrees to radians:

a = convang([3 10 20],'deg','rad')

a =

0.0524 0.1745 0.3491

See Also convacc | convangacc | convangvel | convdensity | convforce |
convlength | convmass | convpres | convtemp | convvel

4-80

convangacc

Purpose Convert from angular acceleration units to desired angular acceleration
units

Syntax convertedValues = convangacc(valuesToConvert,
inputAngularUnits, outputAngularUnits)

Description convertedValues = convangacc(valuesToConvert,
inputAngularUnits, outputAngularUnits) computes the conversion
factor from specified input angular acceleration units to specified output
angular acceleration units. It then applies the conversion factor to the
input to produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputAngularUnits to outputAngularUnits.

inputAngularUnits

Specified input angular acceleration units, as strings. Supported
unit strings are:

'deg/s^2' Degrees per second squared

'rad/s^2' Radians per second squared

'rpm/s' Revolutions per minute per second

outputAngularUnits

Specified output angular acceleration units, as strings. Supported
unit strings are:

'deg/s^2' Degrees per second squared

'rad/s^2' Radians per second squared

'rpm/s' Revolutions per minute per second

4-81

convangacc

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three angular accelerations from degrees per second squared to
radians per second squared:

a = convangacc([0.3 0.1 0.5],'deg/s^2','rad/s^2')

a =

0.0052 0.0017 0.0087

See Also convacc | convang | convangvel | convdensity | convforce |
convlength | convmass | convpres | convtemp | convvel

4-82

convangvel

Purpose Convert from angular velocity units to desired angular velocity units

Syntax convertedValues = convangvel(valuesToConvert,
inputAngularVelocityUnits, outputAngularVelocityUnits)

Description convertedValues = convangvel(valuesToConvert,
inputAngularVelocityUnits, outputAngularVelocityUnits)
computes the conversion factor from specified input angular velocity
units to specified output angular velocity units. It then applies the
conversion factor to the input to produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputAngularVelocityUnits to outputAngularVelocityUnits.

inputAngularVelocityUnits

Specified input angular velocity units, as strings. Supported unit
strings are:

'deg/s' Degrees per second

'rad/s' Radians per second

'rpm' Revolutions per minute

outputAngularVelocityUnits

Specified output angular velocity units, as strings. Supported
unit strings are:

'deg/s' Degrees per second

'rad/s' Radians per second

'rpm' Revolutions per minute

4-83

convangvel

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three angular velocities from degrees per second to radians
per second:

a = convangvel([0.3 0.1 0.5],'deg/s','rad/s')

a =

0.0052 0.0017 0.0087

See Also convacc | convang | convangacc | convdensity | convforce |
convlength | convmass | convpres | convtemp | convvel

4-84

convdensity

Purpose Convert from density units to desired density units

Syntax convertedValues = convdensity(valuesToConvert,
inputDensityUnits, outputDensityUnits)

Description convertedValues = convdensity(valuesToConvert,
inputDensityUnits, outputDensityUnits) computes the conversion
factor from specified input density units to specified output density
units. It then applies the conversion factor to the input to produce the
output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputDensityUnits to outputDensityUnits.

inputDensityUnits

Specified input density units, as strings. Supported unit strings
are:

'lbm/ft^3' Pound mass per feet cubed

'kg/m^3' Kilograms per meters cubed

'slug/ft^3' Slugs per feet cubed

'lbm/in^3' Pound mass per inch cubed

outputDensityUnits

Specified output density units, as strings. Supported unit strings
are:

'lbm/ft^3' Pound mass per feet cubed

'kg/m^3' Kilograms per meters cubed

4-85

convdensity

'slug/ft^3' Slugs per feet cubed

'lbm/in^3' Pound mass per inch cubed

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three densities from pound mass per feet cubed to kilograms
per meters cubed:

a = convdensity([0.3 0.1 0.5],'lbm/ft^3','kg/m^3')

a =

4.8055 1.6018 8.0092

See Also convacc | convang | convangacc | convangvel | convforce |
convlength | convmass | convpres | convtemp | convvel

4-86

convforce

Purpose Convert from force units to desired force units

Syntax convertedValues = convforce(valuesToConvert,
inputForceUnits,

outputForceUnits)

Description convertedValues = convforce(valuesToConvert,
inputForceUnits, outputForceUnits) computes the
conversion factor from specified input force units to specified output
force units. It then applies the conversion factor to the input to produce
the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputForceUnits to outputForceUnits.

inputForceUnits

Specified input force units, as strings. Supported unit strings are:

'lbf' Pound force

'N' Newton

outputForceUnits

Specified output force units, as strings. Supported unit strings
are:

'lbf' Pound force

'N' Newton

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

4-87

convforce

Examples Convert three forces from pound force to newtons:

a = convforce([120 1 5],'lbf','N')

a =

533.7866 4.4482 22.2411

See Also convacc | convang | convangacc | convangvel | convdensity |
convlength | convmass | convpres | convtemp | convvel

4-88

convlength

Purpose Convert from length units to desired length units

Syntax convertedValues = convlength(valuesToConvert,
inputLengthUnits, outputLengthUnits)

m

Description convertedValues = convlength(valuesToConvert,
inputLengthUnits, outputLengthUnits) computes the conversion
factor from specified input length units to specified output length units.
It then applies the conversion factor to the input to produce the output
in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputLengthUnits to outputLengthUnits.

inputLengthUnits

Specified input length units, as strings. Supported unit strings
are:

'ft' Feet

'm' Meters

'km' Kilometers

'in' Inches

'mi' Miles

'naut mi' Nautical miles

outputLengthUnits

Specified output length units, as strings. Supported unit strings
are:

4-89

convlength

'ft' Feet

'm' Meters

'km' Kilometers

'in' Inches

'mi' Miles

'naut mi' Nautical miles

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three lengths from feet to meters:

a = convlength([3 10 20],'ft','m')

a =

0.9144 3.0480 6.0960

See Also convacc | convang | convangacc | convangvel | convdensity |
convforce | convmass | convpres | convtemp | convvel

4-90

convmass

Purpose Convert from mass units to desired mass units

Syntax convertedValues = convmass(valuesToConvert, inputMassUnits,
outputMassUnits)

Description convertedValues = convmass(valuesToConvert, inputMassUnits,
outputMassUnits) computes the conversion factor from specified
input mass units to specified output mass units. It then applies the
conversion factor to the input to produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputMassUnits to outputMassUnits.

inputMassUnits

Specified input mass units, as strings. Supported unit strings are:

'lbm' Pound mass

'kg' Kilograms

'slugs' Slugs

outputMassUnits

Specified output mass units, as strings. Supported unit strings
are:

'lbm' Pound mass

'kg' Kilograms

'slugs' Slugs

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

4-91

convmass

Examples Convert three masses from pound mass to kilograms:

a = convmass([3 1 5],'lbm','kg')

a =

1.3608 0.4536 2.2680

See Also convacc | convang | convangacc | convangvel | convdensity |
convforce | convlength | convpres | convtemp | convvel

4-92

convpres

Purpose Convert from pressure units to desired pressure units

Syntax convertedValues= convpres(valuesToConvert,
inputPressureUnits, outputPressureUnits)

Description convertedValues= convpres(valuesToConvert,
inputPressureUnits, outputPressureUnits) computes the
conversion factor from specified input pressure units to specified output
pressure units. It then applies the conversion factor to the input to
produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputPressureUnits to outputPressureUnits.

inputPressureUnits

Specified input pressure units, as strings. Supported unit strings
are:

'psi' Pound force per square inch

'Pa' Pascal

'psf' Pound force per square foot

'atm' Atmosphere

outputPressureUnits

Specified output pressure units, as strings. Supported unit
strings are:

'psi' Pound force per square inch

'Pa' Pascal

4-93

convpres

'psf' Pound force per square foot

'atm' Atmosphere

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert two pressures from pound force per square inch to atmospheres:

a = convpres([14.696 35],'psi','atm')

a =

1.0000 2.3816

See Also convacc | convang | convangacc | convangvel | convdensity |
convforce | convlength | convmass | convtemp | convvel

4-94

convtemp

Purpose Convert from temperature units to desired temperature units

Syntax convertedValues = convtemp(valuesToConvert,
inputTemperatureUnits, outputTemperatureUnits)

Description convertedValues = convtemp(valuesToConvert,
inputTemperatureUnits, outputTemperatureUnits)
computes the conversion factor from specified input temperature units
to specified output temperature units. It then applies the conversion
factor to the input, to produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputTemperatureUnits to outputTemperatureUnits.

inputTemperatureUnits

Specified input temperature units, as strings. Supported unit
strings are:

'K' Kelvin

'F' Degrees Fahrenheit

'C' Degrees Celsius

'R' Degrees Rankine

outputTemperatureUnits

Specified output temperature units, as strings. Supported unit
strings are:

'K' Kelvin

'F' Degrees Fahrenheit

4-95

convtemp

'C' Degrees Celsius

'R' Degrees Rankine

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three temperatures from degrees Celsius to degrees Fahrenheit:

a = convtemp([0 100 15],'C','F')

a =

32.0000 212.0000 59.0000

See Also convacc | convang | convangacc | convangvel | convdensity |
convforce | convlength | convmass | convpres | convvel

4-96

convvel

Purpose Convert from velocity units to desired velocity units

Syntax convertedValues = convvel(valuesToConvert,
inputVelocityUnits, outputVelocityUnits)

Description convertedValues = convvel(valuesToConvert,
inputVelocityUnits, outputVelocityUnits) computes the
conversion factor from specified input velocity units to specified output
velocity units. It then applies the conversion factor to the input to
produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputVelocityUnits to outputVelocityUnits.

inputVelocityUnits

Specified input velocity units, as strings. Supported unit strings
are:

'ft/s' Feet per second

'm/s' Meters per second

'km/s' Kilometers per second

'in/s' Inches per second

'km/h' Kilometers per hour

'mph' Miles per hour

'kts' Knots

'ft/min' Feet per minute

outputVelocityUnits

Specified output velocity units, as strings. Supported unit strings
are:

4-97

convvel

'ft/s' Feet per second

'm/s' Meters per second

'km/s' Kilometers per second

'in/s' Inches per second

'km/h' Kilometers per hour

'mph' Miles per hour

'kts' Knots

'ft/min' Feet per minute

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three velocities from feet per minute to meters per second:

a = convvel([30 100 250],'ft/min','m/s')

a =

0.1524 0.5080 1.2700

See Also convacc | convang | convangacc | convangvel | convdensity |
convforce | convlength | convmass | convpres | convtemp

4-98

correctairspeed

Purpose Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true
airspeed (TAS) from one of other two airspeeds

Syntax outputAirpseed = correctairspeed(inputAirspeed,
speedOfSound,

pressure0, inputAirspeedType, outputAirspeedType)

Description outputAirpseed = correctairspeed(inputAirspeed,
speedOfSound, pressure0, inputAirspeedType,
outputAirspeedType) computes the conversion factor from
specified input airspeed to specified output airspeed using speed of
sound and static pressure. The function applies the conversion factor to
the input airspeed to produce the output in the desired airspeed.

This function is based on an assumption of compressible, isentropic
(subsonic flow), dry air with constant specific heat ratio (gamma).

Input
Arguments

inputAirspeed

Floating-point array of size m-by-1 of airspeeds in meters per
second. All values must have the same airspeed conversions from
inputAirspeedType to outputAirspeedType.

speedOfSound

Floating-point array of size m-by-1 of speeds of sound, in meters
per second.

pressure0

Floating-point array of size m-by-1 of static air pressures, in pascal.

inputAirspeedType

Input airspeed string. Supported airspeed strings are:

'TAS' True airspeed

'CAS' Calibrated airspeed

'EAS' Equivalent airspeed

4-99

correctairspeed

outputAirspeedType

Output airspeed string. Supported airspeed strings are:

'TAS' True airspeed

'CAS' Calibrated airspeed

'EAS' Equivalent airspeed

Output
Arguments

outputAirpseed

Floating-point array of size m-by-1 of airspeeds in meters per
second.

Examples Convert three airspeeds from true airspeed to equivalent airspeed at
1000 ms:

as = correctairspeed([25.7222; 10.2889; 3.0867], 336.4, 89874.6,'TAS','EAS')

as =

24.5057

9.8023

2.9407

Convert airspeeds from true airspeed to equivalent airspeed at 1000
m and 0 m:

ain = [25.7222; 10.2889; 3.0867];
sos = [336.4; 340.3; 340.3];
P0 = [89874.6; 101325; 101325];
as = correctairspeed(ain, sos, P0,'TAS','EAS')

as =

24.5057

4-100

correctairspeed

10.2887
3.0866

References Lowry, J.T., Performance of Light Aircraft, AIAA Education Series,
Washington, D.C., 1999

Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August1986

See Also airspeed

4-101

Aero.Animation.createBody

Purpose Create body and its associated patches in animation

Syntax idx = createBody(h,bodyDataSrc)
idx = h.createBody(bodyDataSrc)
idx = createBody(h,bodyDataSrc,geometrysource)
idx = h.createBody(bodyDataSrc,geometrysource)

Description idx = createBody(h,bodyDataSrc) and idx =
h.createBody(bodyDataSrc) create a new body using the
bodyDataSrc, makes its patches, and adds it to the animation object h.
This command assumes a default geometry source type set to Auto.

idx = createBody(h,bodyDataSrc,geometrysource) and idx =
h.createBody(bodyDataSrc,geometrysource) create a new body
using the bodyDataSrc file, makes its patches, and adds it to the
animation object h. geometrysource is the geometry source type for
the body.

Input
Arguments

bodyDataSrc Source of data for body.

geometrysource Geometry source type for body:
• Auto — Recognizes .mat extensions as
MAT-files, .ac extensions as Ac3d files,
and structures containing fields of name,
faces, vertices, and cdata as MATLAB
variables. Default.

• Variable — Recognizes structures
containing fields of name, faces, vertices,
and cdata as MATLAB variables.

• MatFile— Recognizes .mat extensions as
MAT-files.

• Ac3d— Recognizes .ac extensions as Ac3d
files.

• Custom— Recognizes custom extensions.

4-102

Aero.Animation.createBody

Output
Arguments

idx Index of the body to be created.

Examples Create a body for the animation object, h. Use the Ac3d format data
source pa24-250_orange.ac, for the body.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');

4-103

datcomimport

Purpose Bring DATCOM file into MATLAB environment

Syntax aero = datcomimport(file)
aero = datcomimport(file, usenan)
aero = datcomimport(file, usenan, verbose)
aero = datcomimport(file, usenan, verbose, filetype)

Description aero = datcomimport(file) takes a file name, file, as a string (or a
cell array of file names as strings), and imports aerodynamic data from
file into a cell array of structures, aero. Before reading the DATCOM
file, the function initializes values to 99999 to show when there is not a
full set of data for the DATCOM case.

aero = datcomimport(file, usenan) is an alternate method allowing
the replacement of data points with NaN or zero where no DATCOM
methods exist or where the method is not applicable. The default value
for usenan is true.

aero = datcomimport(file, usenan, verbose) is an alternate
method to display the status of the DATCOM file being read. The
default value for verbose is 2, which displays a wait bar. Other options
are 0, which displays no information, and 1, which displays text to the
MATLAB Command Window.

aero = datcomimport(file, usenan, verbose, filetype) is an
alternate method that allows you to specify which type of DATCOM file
to read. The possible values are:

filetype Value Output File from DATCOM

6 (Default) for006.dat output by all DATCOM
versions

21 for021.dat output by DATCOM 2007 and
DATCOM 2008

42 for042.csv output by DATCOM 2008

4-104

datcomimport

for filetype is 6, which reads the for006.dat file output by DATCOM.
The other option is 21, which reads the for021.dat file output by
DATCOM 2007.

Note If filetype is 21, the last entry in aero is a table the function
reads breakpoints collected from all of the cases.

Fields for the 1976, 1999, 2007, and 2008 versions of the type 6 output
files are described in the following:

• “Fields for 1976 Version (File Type 6)” on page 4-105

• “Fields for 1999 Version (File Type 6)” on page 4-125

• “Fields for 2007 and 2008 Version (File Type 6)” on page 4-130

•

Fields for 2007 and 2008 version of the type 21 output file are described
in

• “Fields for 2007 and 2008 Version (File Type 21)” on page 4-135

Fields for 2008 version of the type 42 output file are described in

• “Fields for 2008 Version (File Type 42)” on page 4-140

Fields for 1976 Version (File Type 6)

The fields of aero depend on the data within the DATCOM file:

Common Fields for the 1976 Version (File Type 6)

Field Description Default

case String containing the case ID. []

mach Array of Mach numbers. []

4-105

datcomimport

Common Fields for the 1976 Version (File Type 6) (Continued)

Field Description Default

alt Array of altitudes. []

alpha Array of angles of attack. []

nmach Number of Mach numbers. 0

nalt Number of altitudes. 0

nalpha Number of angles of attack. 0

rnnub Array of Reynolds numbers. []

hypers Logical denoting, when true, that
mach numbers above tsmach are
hypersonic. Default values are
supersonic.

false

loop Scalar denoting the type of looping
done to generate the DATCOM file.
When loop is 1, mach and alt are
varied together. When loop is 2, mach
varies while alt is fixed. Altitude
is then updated and Mach numbers
are cycled through again. When loop
is 3, mach is fixed while alt varies.
mach is then updated and altitudes
are cycled through again.

1

sref Scalar denoting the reference area
for the case.

[]

cbar Scalar denoting the longitudinal
reference length.

[]

blref Scalar denoting the lateral reference
length.

[]

4-106

datcomimport

Common Fields for the 1976 Version (File Type 6) (Continued)

Field Description Default

dim String denoting the specified system
of units for the case.

'ft'

deriv String denoting the specified angle
units for the case.

'deg'

stmach Scalar value setting the upper limit
of subsonic Mach numbers.

0.6

tsmach Scalar value setting the lower limit of
supersonic Mach numbers.

1.4

save Logical denoting whether the input
values for this case are used in the
next case.

false

stype Scalar denoting the type of
asymmetric flap for the case.

[]

trim Logical denoting the reading of trim
data for the case. When trim runs are
read, this value is set to true.

false

damp Logical denoting the reading of
dynamic derivative data for the case.
When dynamic derivative runs are
read, this value is set to true.

false

build Scalar denoting the reading of build
data for the case. When build runs
are read, this value is set to 10.

1

part Logical denoting the reading of
partial data for the case. When
partial runs are written for each
Mach number, this value is set to
true.

false

4-107

datcomimport

Common Fields for the 1976 Version (File Type 6) (Continued)

Field Description Default

highsym Logical denoting the reading of
symmetric flap high-lift data for the
case. When symmetric flap runs are
read, this value is set to true.

false

highasy Logical denoting the reading of
asymmetric flap high-lift data for the
case. When asymmetric flap runs are
read, this value is set to true.

false

highcon Logical denoting the reading of
control/trim tab high-lift data for the
case. When control/trim tab runs are
read, this value is set to true.

false

tjet Logical denoting the reading of
transverse-jet control data for the
case. When transverse-jet control
runs are read, this value is set to
true.

false

hypeff Logical denoting the reading of
hypersonic flap effectiveness data
for the case. When hypersonic flap
effectiveness runs are read, this
value is set to true.

false

lb Logical denoting the reading of low
aspect ratio wing or lifting body data
for the case. When low aspect ratio
wing or lifting body runs are read,
this value is set to true.

false

4-108

datcomimport

Common Fields for the 1976 Version (File Type 6) (Continued)

Field Description Default

pwr Logical denoting the reading of power
effects data for the case. When power
effects runs are read, this value is set
to true.

false

grnd Logical denoting the reading of
ground effects data for the case.
When ground effects runs are read,
this value is set to true.

false

wsspn Scalar denoting the semi-span
theoretical panel for wing. This
value is used to determine if the
configuration contains a canard.

1

hsspn Scalar denoting the semi-span
theoretical panel for horizontal tail.
This value is used to determine if the
configuration contains a canard.

1

ndelta Number of control surface deflections:
delta, deltal, or deltar.

0

delta Array of control-surface streamwise
deflection angles.

[]

deltal Array of left lifting surface
streamwise control deflection
angles, which are defined positive for
trailing-edge down.

[]

deltar Array of right lifting surface
streamwise control deflection angles,
which are defined positive for
trailing-edge down.

[]

4-109

datcomimport

Common Fields for the 1976 Version (File Type 6) (Continued)

Field Description Default

ngh Scalar denoting the number of ground
altitudes.

0

grndht Array of ground heights. []

config Structure of logicals denoting
whether the case contains horizontal
tails.

false, as follows.

config.downwash = false;
config.body = false;
config.wing = false;
config.htail = false;
config.vtail = false;
config.vfin = false;

version Version of DATCOM file. 1976

Static Longitude and Lateral Stability Fields Available for the 1976 Version (File
Type 6)

Field Matrix of... Function of...

cd Drag coefficients, which are defined
positive for an aft-acting load.

alpha, mach, alt, build, grndht,
delta

cl Lift coefficients, which are defined
positive for an up-acting load.

alpha, mach, alt, build, grndht,
delta

cm Pitching-moment coefficients, which
are defined positive for a nose-up
rotation.

alpha, mach, alt, build, grndht,
delta

cn Normal-force coefficients, which are
defined positive for a normal force in
the +Z direction.

alpha, mach, alt, build, grndht,
delta

4-110

datcomimport

Static Longitude and Lateral Stability Fields Available for the 1976 Version (File
Type 6) (Continued)

Field Matrix of... Function of...

ca Axial-force coefficients, which are
defined positive for a normal force in
the +X direction.

alpha, mach, alt, build, grndht,
delta

xcp Distances between moment reference
center and the center of pressure
divided by the longitudinal reference
length. Distances are defined positive
for a location forward of the center of
gravity.

alpha, mach, alt, build, grndht,
delta

cla Derivatives of lift coefficients with
respect to alpha.

alpha, mach, alt, build, grndht,
delta

cma Derivatives of pitching-moment
coefficients with respect to alpha.

alpha, mach, alt, build, grndht,
delta

cyb Derivatives of side-force coefficients
with respect to sideslip angle.

alpha, mach, alt, build, grndht,
delta

cnb Derivatives of yawing-moment
coefficients with respect to sideslip
angle.

alpha, mach, alt, build, grndht,
delta

clb Derivatives of rolling-moment
coefficients with respect to sideslip
angle.

alpha, mach, alt, build, grndht,
delta

qqinf Ratios of dynamic pressure at the
horizontal tail to the freestream
value.

alpha, mach, alt, build, grndht,
delta

eps Downwash angle at horizontal tail in
degrees.

alpha, mach, alt, build, grndht,
delta

depsdalp Downwash angle with respect to
angle of attack.

alpha, mach, alt, build, grndht,
delta

4-111

datcomimport

Dynamic Derivative Fields for the 1976 Version (File Type 6)

Field Matrix of... Function of...

clq Rolling-moment derivatives due to pitch
rate.

alpha, mach, alt, build

cmq Pitching-moment derivatives due to pitch
rate.

alpha, mach, alt, build

clad Lift-force derivatives due to rate of angle of
attack.

alpha, mach, alt, build

cmad Pitching-moment derivatives due to rate of
angle of attack.

alpha, mach, alt, build

clp Rolling-moment derivatives due to roll rate. alpha, mach, alt, build

cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, build

cnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, build

cnr Yawing-moment derivatives due to yaw
rate.

alpha, mach, alt, build

clr Rolling-moment derivatives due to yaw rate. alpha, mach, alt, build

High-Lift and Control Fields for Symmetric Flaps for the 1976 Version (File Type 6)

Field Matrix of... Function of...

dcl_sym Incremental lift coefficients due to deflection
of control surface, valid in the linear-lift
angle of attack range.

delta, mach, alt

dcm_sym Incremental pitching-moment coefficients
due to deflection of control surface, valid in
the linear-lift angle of attack range.

delta, mach, alt

dclmax_sym Incremental maximum lift coefficients. delta, mach, alt

dcdmin_sym Incremental minimum drag coefficients due
to control or flap deflection.

delta, mach, alt

4-112

datcomimport

High-Lift and Control Fields for Symmetric Flaps for the 1976 Version (File Type
6) (Continued)

Field Matrix of... Function of...

clad_sym Lift-curve slope of the deflected, translated
surface.

delta, mach, alt

cha_sym Control-surface hinge-moment derivatives
due to angle of attack. These derivatives,
when defined positive, will tend to rotate
the flap trailing edge down.

delta, mach, alt

chd_sym Control-surface hinge-moment derivatives
due to control deflection. When defined
positive, these derivatives will tend to
rotate the flap trailing edge down.

delta, mach, alt

dcdi_sym Incremental induced drag coefficients due
to flap detection.

alpha, delta, mach, alt

High-Lift and Control Fields Available for Asymmetric Flaps for the 1976 Version
(File Type 6)

Field Matrix of... Function of...

xsc Streamwise distances from wing
leading edge to spoiler tip.

delta, mach, alt

hsc Projected height of spoiler measured
from normal to airfoil meanline.

delta, mach, alt

ddc Projected height of deflector for
spoiler-slot-deflector control.

delta, mach, alt

dsc Projected height of spoiler control. delta, mach, alt

4-113

datcomimport

High-Lift and Control Fields Available for Asymmetric Flaps for the 1976 Version
(File Type 6) (Continued)

Field Matrix of... Function of...

clroll Incremental rolling-moment
coefficients due to asymmetrical
deflection of control surface. The
coefficients are defined positive
when right wing is down.

delta, mach, and alt, or alpha,
delta, mach, and alt for differential
horizontal stabilizer

cn_asy Incremental yawing-moment
coefficients due to asymmetrical
deflection of control surface. The
coefficients are defined positive
when nose is right.

delta, mach, and alt, or alpha,
delta, mach, and alt for plain flaps

High-Lift and Control Fields Available for Control/Trim Tabs for the 1976 Version
(File Type 6)

Field Matrix of... Function of...

fc_con Stick forces or stick force coefficients. alpha, delta, mach, alt

fhmcoeff_free Flap-hinge moment coefficients tab
free.

alpha, delta, mach, alt

fhmcoeff_lock Flap-hinge moment coefficients tab
locked.

alpha, delta, mach, alt

fhmcoeff_gear Flap-hinge moment coefficients due to
gearing.

alpha, delta, mach, alt

ttab_def Trim-tab deflections for zero stick
force.

alpha, delta, mach, alt

4-114

datcomimport

High-Lift and Control Fields Available for Trim for the 1976 Version (File Type 6)

Field Matrix of... Function of...

cl_utrim Untrimmed lift coefficients, which are
defined positive for an up-acting load.

alpha, mach, alt

cd_utrim Untrimmed drag coefficients, which are
defined positive for an aft-acting load.

alpha, mach, alt

cm_utrim Untrimmed pitching-moment coefficients,
which are defined positive for a nose-up
rotation.

alpha, mach, alt

delt_trim Trimmed control-surface streamwise
deflection angles.

alpha, mach, alt

dcl_trim Trimmed incremental lift coefficients in
the linear-lift angle of attack range due to
deflection of control surface.

alpha, mach, alt

dclmax_trim Trimmed incremental maximum lift
coefficients.

alpha, mach, alt

dcdi_trim Trimmed incremental induced drag
coefficients due to flap deflection.

alpha, mach, alt

dcdmin_trim Trimmed incremental minimum drag
coefficients due to control or flap deflection.

alpha, mach, alt

cha_trim Trimmed control-surface hinge-moment
derivatives due to angle of attack.

alpha, mach, alt

chd_trim Trimmed control-surface hinge-moment
derivatives due to control deflection.

alpha, mach, alt

cl_tailutrim Untrimmed stabilizer lift coefficients,
which are defined positive for an up-acting
load.

alpha, mach, alt

cd_tailutrim Untrimmed stabilizer drag coefficients,
which are defined positive for an aft-acting
load.

alpha, mach, alt

4-115

datcomimport

High-Lift and Control Fields Available for Trim for the 1976 Version (File Type
6) (Continued)

Field Matrix of... Function of...

cm_tailutrim Untrimmed stabilizer pitching-moment
coefficients, which are defined positive for
a nose-up rotation.

alpha, mach, alt

hm_tailutrim Untrimmed stabilizer hinge-moment
coefficients, which are defined positive for
a stabilizer rotation with leading edge up
and trailing edge down.

alpha, mach, alt

aliht_tailtrim Stabilizer incidence required to trim. alpha, mach, alt

cl_tailtrim Trimmed stabilizer lift coefficients, which
are defined positive for an up-acting load.

alpha, mach, alt

cd_tailtrim Trimmed stabilizer drag coefficients, which
are defined positive for an aft-acting load.

alpha, mach, alt

cm_tailtrim Trimmed stabilizer pitching-moment
coefficients, which are defined positive for
a nose-up rotation.

alpha, mach, alt

hm_tailtrim Trimmed stabilizer hinge-moment
coefficients, which are defined positive for
a stabilizer rotation with leading edge up
and trailing edge down.

alpha, mach, alt

cl_trimi Lift coefficients at trim incidence. These
coefficients are defined positive for an
up-acting load.

alpha, mach, alt

cd_trimi Drag coefficients at trim incidence. These
coefficients are defined positive for an
aft-acting load.

alpha, mach, alt

4-116

datcomimport

Transverse Jet Control Fields for the 1976 Version (File Type 6)

Field Description Stored with Indices of...

time Matrix of times. mach, alt, alpha

ctrlfrc Matrix of control forces. mach, alt, alpha

locmach Matrix of local Mach numbers. mach, alt, alpha

reynum Matrix of Reynolds numbers. mach, alt, alpha

locpres Matrix of local pressures. mach, alt, alpha

dynpres Matrix of dynamic pressures. mach, alt, alpha

blayer Cell array of strings containing the state of
the boundary layer.

mach, alt, alpha

ctrlcoeff Matrix of control force coefficients. mach, alt, alpha

corrcoeff Matrix of corrected force coefficients. mach, alt, alpha

sonicamp Matrix of sonic amplification factors. mach, alt, alpha

ampfact Matrix of amplification factors. mach, alt, alpha

vacthr Matrix of vacuum thrusts. mach, alt, alpha

minpres Matrix of minimum pressure ratios. mach, alt, alpha

minjet Matrix of minimum jet pressures. mach, alt, alpha

jetpres Matrix of jet pressures. mach, alt, alpha

massflow Matrix of mass flow rates. mach, alt, alpha

propelwt Matrix of propellant weights. mach, alt, alpha

4-117

datcomimport

Hypersonic Fields for the 1976 Version (File Type 6)

Field Matrix of... Stored with Indices of...

df_normal Increments in normal force per spanwise
foot of control.

alpha, delta, mach

df_axial Increments in axial force per spanwise foot
of control.

alpha, delta, mach

cm_normal Increments in pitching moment due to
normal force per spanwise foot of control.

alpha, delta, mach

cm_axial Increments in pitching moment due to axial
force per spanwise foot of control.

alpha, delta, mach

cp_normal Center of pressure locations of normal force. alpha, delta, mach

cp_axial Center of pressure locations of axial force. alpha, delta, mach

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)

Field Matrix of... Stored with Indices of...

wetarea_b Body wetted area. mach, alt, number of runs

xcg_b Longitudinal locations of the
center of gravity.

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

zcg_b Vertical locations of the center of
gravity.

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

basearea_b Body base area. mach, alt, number of runs
(normally 1, 2 for hypers =
true)

cd0_b Body zero lift drags. mach, alt, number of runs
(normally 1, 2 for hypers =
true)

4-118

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

basedrag_b Body base drags. mach, alt, number of runs
(normally 1, 2 for hypers =
true)

fricdrag_b Body friction drags. mach, alt, number of runs
(normally 1, 2 for hypers =
true)

presdrag_b Body pressure drags. mach, alt, number of runs
(normally 1, 2 for hypers =
true)

lemac Leading edge mean aerodynamic
chords.

mach, alt

sidewash sidewash mach, alt

hiv_b_w iv-b(w) alpha, mach, alt

hiv_w_h iv-w(h) alpha, mach, alt

hiv_b_h iv-b(h) alpha, mach, alt

gamma gamma*2*pi*alpha*v*r alpha, mach, alt

gamma2pialpvr gamma*(2*pi*alpha*v*r)t alpha, mach, alt

clpgammacl0 clp(gamma=cl=0) mach, alt

clpgammaclp clp(gamma)/cl (gamma=0) mach, alt

cnptheta cnp/theta mach, alt

cypgamma cyp/gamma mach, alt

cypcl cyp/cl (cl=0) mach, alt

clbgamma clb/gamma mach, alt

cmothetaw (cmo/theta)w mach, alt

cmothetah (cmo/theta)h mach, alt

4-119

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

espeff (epsoln)eff alpha, mach, and alt

despdalpeff d(epsoln)/d(alpha) eff alpha, mach, alt

dragdiv drag divergence mach number mach, alt

cd0mach Four Mach numbers for the zero
lift drag.

index, mach, alt

cd0 Four zero lift drags. index, mach, alt

clbclmfb_**** (clb/cl)mfb, where **** is
either wb (wing-body) or bht
(body-horizontal tail).

mach, alt.

cnam14_**** (cna)m=1.4, where **** is
either wb (wing-body) or bht
(body-horizontal tail).

mach,alt

area_*_** Areas, where * is either w (wing),
ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is
either tt (total theoretical), ti
(theoretical inboard), te (total
exposed), ei (exposed inboard),
or o (outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

taperratio_*_** Taper ratios, where * is either
w (wing), ht (horizontal tail),
vt (vertical tail), or vf (ventral
fin) and ** is either tt (total
theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

4-120

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

aspectratio_*_** Aspect ratios, where * is either
w (wing), ht (horizontal tail),
vt (vertical tail), or vf (ventral
fin) and ** is either tt (total
theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

qcsweep_*_** Quarter chord sweeps, where *
is either w (wing), ht (horizontal
tail), vt (vertical tail), or vf
(ventral fin) and ** is either tt
(total theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

mac_*_** Mean aerodynamic chords,
where * is either w (wing), ht
(horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is
either tt (total theoretical), ti
(theoretical inboard), te (total
exposed), ei (exposed inboard),
or o (outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

4-121

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

qcmac_*_** Quarter chord x(mac), where *
is either w (wing), ht (horizontal
tail), vt (vertical tail), or vf
(ventral fin) and ** is either tt
(total theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

ymac_*_** y(mac), where * is either w (wing),
ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is
either tt (total theoretical), ti
(theoretical inboard), te (total
exposed), ei (exposed inboard),
or o (outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

cd0_*_** Zero lift drags, where * is either
w (wing), ht (horizontal tail),
vt (vertical tail), or vf (ventral
fin) and ** is either tt (total
theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

4-122

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

friccoeff_*_** Friction coefficients, where * is
either w (wing), ht (horizontal
tail), vt (vertical tail), or vf
(ventral fin) and ** is either tt
(total theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

cla_b_*** cla-b(***), where *** is either
w (wing) or ht (stabilizer).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

cla_***_b cla-***(b), where *** is either
w (wing) or ht (stabilizer).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

k_b_*** k-b(***), where *** is either w
(wing) or ht (stabilizer).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

k_***_b k-***(b), where *** is either w
(wing) or ht (stabilizer).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

xacc_b_*** xac/c-b(***), where *** is
either w (wing) or ht (stabilizer).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

cdlcl2_*** cdl/cl^2, where *** is either w
(wing) or ht (stabilizer).

mach, alt

clbcl_*** clb/cl, where *** is either w
(wing) or ht (stabilizer).

mach, alt

4-123

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

fmach0_*** Force break Mach numbers with
zero sweep, where *** is either w
(wing) or ht (stabilizer).

mach, alt

fmach_*** Force break Mach numbers with
sweep, where *** is either w
(wing) or ht (stabilizer).

mach, alt

macha_*** mach(a), where *** is either w
(wing) or ht (stabilizer).

mach, alt

machb_*** mach(b), where *** is either w
(wing) or ht (stabilizer).

mach, alt

claa_*** cla(a), where *** is either w
(wing) or ht (stabilizer).

mach, alt

clab_*** cla(b), where *** is either w
(wing) or ht (stabilizer).

mach, alt

clbm06_*** (clb/cl)m=0.6, where *** is
either w (wing) or ht (stabilizer).

mach, alt

clbm14_*** (clb/cl)m=1.4, where *** is
either w (wing) or ht (stabilizer).

mach, alt

clalpmach_*** Five Mach numbers for the lift
curve slope, where *** is either w
(wing) or ht (stabilizer).

index, mach, alt

clalp_*** Five lift-curve slope values,
where *** is either w (wing) or ht
(stabilizer).

index, mach, alt

4-124

datcomimport

Fields for 1999 Version (File Type 6)

Common Fields for the 1999 Version (File Type 6)

Field Description Default

case String containing the case ID. []

mach Array of Mach numbers. []

alt Array of altitudes. []

alpha Array of angles of attack. []

nmach Number of Mach numbers. 0

nalt Number of altitudes. 1

nalpha Number of angles of attack. 0

rnnub Array of Reynolds numbers. []

beta Scalar containing sideslip angle. 0

phi Scalar containing aerodynamic roll angle. 0

loop Scalar denoting the type of looping
performed to generate the DATCOM file.
When loop is 1, mach and alt are varied
together. The only loop option for the
version 1999 of DATCOM is loop is equal
to 1.

1

sref Scalar denoting the reference area for the
case.

[]

cbar Scalar denoting the longitudinal reference
length.

[]

blref Scalar denoting the lateral reference
length.

[]

4-125

datcomimport

Common Fields for the 1999 Version (File Type 6) (Continued)

Field Description Default

dim String denoting the specified system of
units for the case.

'ft'

deriv String denoting the specified angle units
for the case.

'deg'

save Logical denoting whether the input values
for this case are used in the next case.

false

stype Scalar denoting the type of asymmetric
flap for the case.

[]

trim Logical denoting the reading of trim data
for the case. When trim runs are read,
this value is set to true.

false

damp Logical denoting the reading of dynamic
derivative data for the case. When
dynamic derivative runs are read, this
value is set to true.

false

build Scalar denoting the reading of build
data for the case. When build runs are
read, this value is set to the number
of build runs depending on the vehicle
configuration.

1

part Logical denoting the reading of partial
data for the case. When partial runs are
written for each Mach number, this value
is set to true.

false

hypeff Logical denoting the reading of hypersonic
data for the case. When hypersonic data
is read, this value is set to true.

false

4-126

datcomimport

Common Fields for the 1999 Version (File Type 6) (Continued)

Field Description Default

ngh Scalar denoting the number of ground
altitudes.

0

nolat Logical denoting the calculation of the
lateral-direction derivatives is inhibited.

false

config Structure of logicals and structures
detailing the case configuration and fin
deflections.

config.body = false
config.fin1.avail = false;
config.fin1.npanel = [];
config.fin1.delta = [];
config.fin2.avail = false;
config.fin2.npanel = [];
config.fin2.delta = [];
config.fin3.avail = false;
config.fin3.npanel = [];
config.fin3.delta = [];
config.fin4.avail = false;
config.fin4.npanel = [];
config.fin4.delta = [];

version Version of DATCOM file. 1999

Static Longitude and Lateral Stability Fields Available for the 1999 Version (File
Type 6)

Field Matrix of... Function of...

cd Drag coefficients, which are defined positive for
an aft-acting load.

alpha, mach, alt, build

cl Lift coefficients, which are defined positive for an
up-acting load.

alpha,mach, alt, build

4-127

datcomimport

Static Longitude and Lateral Stability Fields Available for the 1999 Version (File
Type 6) (Continued)

Field Matrix of... Function of...

cm Pitching-moment coefficients, which are defined
positive for a nose-up rotation.

alpha, machalt, build

cn Normal-force coefficients, which are defined
positive for a normal force in the +Z direction.

alpha, mach, alt, build

ca Axial-force coefficients, which are defined positive
for a normal force in the +X direction.

alpha, mach, alt, build

xcp Distances between moment reference center and
the center of pressure divided by the longitudinal
reference length. These distances are defined
positive for a location forward of the center of
gravity.

alpha, mach, alt, build

cna Derivatives of normal-force coefficients with
respect to alpha.

alpha, mach, alt, build

cma Derivatives of pitching-moment coefficients with
respect to alpha.

alpha, mach, alt, build

cyb Derivatives of side-force coefficients with respect
to sideslip angle.

alpha, mach, alt, build

cnb Derivatives of yawing-moment coefficients with
respect to sideslip angle.

alpha, mach, alt, build

clb Derivatives of rolling-moment coefficients with
respect to sideslip angle.

alpha, mach, alt, build

clod Ratios of lift coefficient to drag coefficient. alpha, mach, alt, build

cy Side-force coefficients. alpha, mach, alt, build

cln Yawing-moment coefficient in body-axis. alpha, mach, alt, build

cll Rolling-moment coefficient in body-axis. alpha, mach, alt, build

4-128

datcomimport

Dynamic Derivative Fields for the 1999 Version (File Type 6)

Field Matrix of... Function of...

cnq Normal-force derivatives due to pitch
rate.

alpha, mach, alt, build

cmq Pitching-moment derivatives due to
pitch rate.

alpha, mach, alt, build

caq Axial-force derivatives due to pitch
rate.

alpha, mach, alt, build

cnad Normal-force derivatives due to rate of
angle of attack.

alpha, mach, alt, build

cmad Pitching-moment derivatives due to
rate of angle of attack.

alpha, mach, alt, build

clp Rolling-moment derivatives due to roll
rate.

alpha, mach, alt, build

cyp Lateral force derivatives due to roll
rate.

alpha, mach, alt, build

cnp Yawing-moment derivatives due to roll
rate.

alpha, mach, alt, build

cnr Yawing-moment derivatives due to
yaw rate.

alpha, mach, alt, build

clr Rolling-moment derivatives due to yaw
rate.

alpha, mach, alt, build

cyr Side force derivatives due to yaw rate. alpha, mach, alt, build

4-129

datcomimport

Fields for 2007 and 2008 Version (File Type 6)

Common Fields for the 2007 and 2008 Version (File Type 6)

Field Description Default

case String containing the case ID. []

mach Array of Mach numbers. []

alt Array of altitudes. []

alpha Array of angles of attack. []

nmach Number of Mach numbers. 0

nalt Number of altitudes. 1

nalpha Number of angles of attack. 0

rnnub Array of Reynolds numbers. []

beta Scalar containing sideslip angle. 0

phi Scalar containing aerodynamic roll
angle.

0

loop Scalar denoting the type of looping
performed to generate the DATCOM
file. When loop is 1, mach and alt are
varied together. The only loop option
for the version 2007 of DATCOM is
loop is equal to 1.

1

sref Scalar denoting the reference area for
the case.

[]

cbar Scalar denoting the longitudinal
reference length.

[]

4-130

datcomimport

Common Fields for the 2007 and 2008 Version (File Type 6) (Continued)

Field Description Default

blref Scalar denoting the lateral reference
length.

[]

dim String denoting the specified system of
units for the case.

'ft'

deriv String denoting the specified angle
units for the case.

'deg'

save Logical denoting whether the input
values for this case are used in the next
case.

false

stype Scalar denoting the type of asymmetric
flap for the case.

[]

trim Logical denoting the reading of trim
data for the case. When trim runs are
read, this value is set to true.

false

damp Logical denoting the reading of dynamic
derivative data for the case. When
dynamic derivative runs are read, this
value is set to true.

false

build Scalar denoting the reading of build
data for the case. When build runs are
read, this value is set to the number
of build runs depending on the vehicle
configuration.

1

part Logical denoting the reading of partial
data for the case. When partial runs
are written for each Mach number, this
value is set to true.

false

4-131

datcomimport

Common Fields for the 2007 and 2008 Version (File Type 6) (Continued)

Field Description Default

hypeff Logical denoting the reading of
hypersonic data for the case. When
hypersonic data is read, this value is
set to true.

false

ngh Scalar denoting the number of ground
altitudes.

0

nolat Logical denoting the calculation of
the lateral-direction derivatives is
inhibited.

false

config Structure of logicals and structures
detailing the case configuration and fin
deflections.

config.body = false;
config.fin1.avail = false;
config.fin1.npanel = [];
config.fin1.delta = [];
config.fin2.avail = false;
config.fin2.npanel = [];
config.fin2.delta = [];
config.fin3.avail = false;
config.fin3.npanel = [];
config.fin3.delta = [];
config.fin4.avail = false;
config.fin4.npanel = [];
config.fin4.delta = [];

nolat_-
namelist

Logical denoting the calculation of the
lateral-direction derivatives is inhibited
in the DATCOM input case.

false

version Version of DATCOM file. 2007

4-132

datcomimport

Static Longitude and Lateral Stability Fields Available for the 2007 and 2008
Version (File Type 6)

Field Matrix of... Function of...

cd Drag coefficients, which are defined positive for
an aft-acting load.

alpha, mach, alt, build

cl Lift coefficients, which are defined positive for an
up-acting load.

alpha,mach, alt, build

cm Pitching-moment coefficients, which are defined
positive for a nose-up rotation.

alpha, machalt, build

cn Normal-force coefficients, which are defined
positive for a normal force in the +Z direction.

alpha, mach, alt, build

ca Axial-force coefficients, which are defined positive
for a normal force in the +X direction.

alpha, mach, alt, build

xcp Distances between moment reference center and
the center of pressure divided by the longitudinal
reference length. These distances are defined
positive for a location forward of the center of
gravity.

alpha, mach, alt, build

cna Derivatives of normal-force coefficients with
respect to alpha.

alpha, mach, alt, build

cma Derivatives of pitching-moment coefficients with
respect to alpha.

alpha, mach, alt, build

cyb Derivatives of side-force coefficients with respect
to sideslip angle.

alpha, mach, alt, build

cnb Derivatives of yawing-moment coefficients with
respect to sideslip angle.

alpha, mach, alt, build

clb Derivatives of rolling-moment coefficients with
respect to sideslip angle.

alpha, mach, alt, build

clod Ratios of lift coefficient to drag coefficient. alpha, mach, alt, build

4-133

datcomimport

Static Longitude and Lateral Stability Fields Available for the 2007 and 2008
Version (File Type 6) (Continued)

Field Matrix of... Function of...

cy Side-force coefficients. alpha, mach, alt, build

cln Yawing-moment coefficient in body-axis. alpha, mach, alt, build

cll Rolling-moment coefficient in body-axis. alpha, mach, alt, build

Dynamic Derivative Fields for the 2007 and 2008 Version (File Type 6)

Field Matrix of... Function of...

cnq Normal-force derivatives due to pitch rate. alpha, mach, alt, build

cmq Pitching-moment derivatives due to pitch
rate.

alpha, mach, alt, build

caq Axial-force derivatives due to pitch rate. alpha, mach, alt, build

cnad Normal-force derivatives due to rate of angle
of attack.

alpha, mach, alt, build

cmad Pitching-moment derivatives due to rate of
angle of attack.

alpha, mach, alt, build

clp Rolling-moment derivatives due to roll rate. alpha, mach, alt, build

cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, build

cnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, build

cnr Yawing-moment derivatives due to yaw rate. alpha, mach, alt, build

clr Rolling-moment derivatives due to yaw rate alpha, mach, alt, build

cyr Side-force derivatives due to yaw rate. alpha, mach, alt, build

4-134

datcomimport

Fields for 2007 and 2008 Version (File Type 21)

Common Fields for the 2007 and 2008 Version (File Type 21)

Field Description Default

mach Array of Mach numbers. []

alt Array of altitudes. []

alpha Array of angles of attack. []

nalpha Number of angles of attack. 0

beta Scalar containing sideslip
angle.

0

total_col Scalar denoting the type of
looping performed to generate
the DATCOM file. When loop
is 1, mach and alt are varied
together. The only loop option
for the 2007 and 2008 versions
of DATCOM is loop is equal
to 1.

[]

deriv_col Logical denoting the
calculation of the
lateral-direction derivatives is
inhibited.

0

config Structure of logicals and
structures detailing the
case configuration and fin
deflections.

config.fin1.delta = zeros(1,8);
config.fin2.delta = zeros(1,8);
config.fin3.delta = zeros(1,8);
config.fin4.delta = zeros(1,8);

version Version of DATCOM file. 2007

4-135

datcomimport

Static Longitude and Lateral Stability Fields Available for the 2007 and 2008
Version (File Type 21)

Field Matrix of... Function of...

cn Normal-force coefficients, which are defined
positive for a normal force in the +Z direction.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cm Pitching-moment coefficients, which are defined
positive for a nose-up rotation.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

ca Axial-force coefficients, which are defined positive
for a normal force in the +X direction.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cy Side-force coefficients. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cln Yawing-moment coefficient in body-axis. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cll Rolling-moment coefficient in body-axis. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

4-136

datcomimport

Dynamic Derivative Fields for the 2007 and 2008 Version (File Type 21)

Field Matrix of... Function of...

cnad Normal-force derivatives due to rate of angle
of attack.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cmad Pitching-moment derivatives due to rate of
angle of attack.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cnq Normal-force derivatives due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cmq Pitching-moment derivatives due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

caq Axial-force derivatives due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cyq Side-force due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

4-137

datcomimport

Dynamic Derivative Fields for the 2007 and 2008 Version (File Type 21)
(Continued)

Field Matrix of... Function of...

clnq Yawing-moment due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cllq Rolling-moment due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cap Axial-force due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

4-138

datcomimport

Dynamic Derivative Fields for the 2007 and 2008 Version (File Type 21)
(Continued)

Field Matrix of... Function of...

clnp Yawing-moment due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cllp Rolling-moment due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cnr Yawing-moment derivatives due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

car Axial-force due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cyr Side-force derivatives due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

4-139

datcomimport

Dynamic Derivative Fields for the 2007 and 2008 Version (File Type 21)
(Continued)

Field Matrix of... Function of...

clnr Yawing-moment due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cllr Rolling-moment due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

Fields for 2008 Version (File Type 42)

Fields for the 2008 Version (File Type 42)

Field Description Default

case String containing the case ID. []

totalCol Scalar containing number of columns
of data in file.

[]

mach Array of Mach numbers. []

alt Array of altitudes. []

alpha Array of angles of attack. []

nmach Number of Mach numbers. 0

nalpha Number of angles of attack. 0

rnnub Array of Reynolds numbers. []

q Dynamic pressure. []

4-140

datcomimport

Fields for the 2008 Version (File Type 42) (Continued)

Field Description Default

beta Scalar containing sideslip angle. 0

phi Scalar containing aerodynamic roll
angle.

0

sref Scalar denoting the reference area
for the case.

[]

cbar Scalar denoting the longitudinal
reference length.

[]

blref Scalar denoting the lateral reference
length.

[]

xcg Distance from nose to center of
gravity.

[]

xmrp Distance from nose to center of
gravity, measured in calibers.

[]

deriv String denoting the specified angle
units for the case.

'deg'

trim Logical denoting the reading of trim
data for the case. When trim runs are
read, this value is set to true.

false

damp Logical denoting the reading of
dynamic derivative data for the case.
When dynamic derivative runs are
read, this value is set to true.

false

build Scalar denoting the reading of partial
data for the case. This value is set to
the number of partial runs depending
on the vehicle configuration.

1

4-141

datcomimport

Fields for the 2008 Version (File Type 42) (Continued)

Field Description Default

part Logical denoting the reading of
partial data for the case. When
partial runs are written for each
Mach number, this value is set to
true.

false

nolat Logical denoting the calculation of
the lateral-direction derivatives is
inhibited.

true

config Structure of logicals and structures
detailing the case configuration and
fin deflections.

config.body = false;
config.fin1.avail = false;
config.fin1.npanel = [];
config.fin1.delta = [];
config.fin2.avail = false;
config.fin2.npanel = [];
config.fin2.delta = [];
config.fin3.avail = false;
config.fin3.npanel = [];
config.fin3.delta = [];
config.fin4.avail = false;
config.fin4.npanel = [];

Static Longitude and Lateral Stability Fields Available for the 2008 Version (File
Type 42)

Field Matrix of... Function of...

delta Trim deflection angles. alpha, mach

cd Drag coefficients, which are defined
positive for an aft-acting load.

alpha, mach, build

4-142

datcomimport

Static Longitude and Lateral Stability Fields Available for the 2008 Version (File
Type 42) (Continued)

Field Matrix of... Function of...

cl Lift coefficients, which are defined
positive for an up-acting load.

alpha, mach, build

cm Pitching-moment coefficients, which
are defined positive for a nose-up
rotation.

alpha, mach, build

cn Normal-force coefficients, which are
defined positive for a normal force in
the +Z direction.

alpha, mach, build

ca Axial-force coefficients, which are
defined positive for a normal force in
the +X direction.

alpha, mach, build

caZeroBase Axial-force coefficient with no base
drag included.

alpha, mach, build

caFullBase Axial-force coefficient with full base
drag included.

alpha, mach, build

xcp Distance from nose to center of
pressure.

alpha, mach, build

cna Derivatives of normal-force
coefficients with respect to alpha.

alpha, mach, build

cma Derivatives of pitching-moment
coefficients with respect to alpha.

alpha, mach, build

cyb Derivatives of side-force coefficients
with respect to sideslip angle.

alpha, mach, build

cnb Derivatives of yawing-moment
coefficients with respect to sideslip
angle.

alpha, mach, build

4-143

datcomimport

Static Longitude and Lateral Stability Fields Available for the 2008 Version (File
Type 42) (Continued)

Field Matrix of... Function of...

clb Derivatives of rolling-moment
coefficients with respect to sideslip
angle.

alpha, mach, build

clod Ratios of lift coefficient to drag
coefficient.

alpha, mach, build

cy Side-force coefficient. alpha, mach, build

cln Yawing-moment coefficient. alpha, mach, build

cll Rolling-moment coefficient. alpha, mach, build

Dynamic Derivative Fields for the 2008 Version (File Type 42)

Field Matrix of... Function of...

cnq Normal-force derivatives due to pitch rate. alpha, mach, alt, build

cmq Pitching-moment derivatives due to pitch
rate.

alpha, mach, alt, build

caq Axial-force derivatives due to pitch rate. alpha, mach, alt, build

cnad Normal-force derivatives due to rate of
angle of attack.

alpha, mach, alt, build

cmad Pitching-moment derivatives due to rate of
angle of attack.

alpha, mach, alt, build

cyq Lateral-force derivatives due to pitch rate. alpha, mach, alt, build

clnq Yawing-moment derivatives due to pitch
rate.

alpha, mach, alt, build

cllq Rolling-moment derivatives due to pitch
rate.

alpha, mach, alt, build

4-144

datcomimport

Dynamic Derivative Fields for the 2008 Version (File Type 42) (Continued)

Field Matrix of... Function of...

cyr Side-force derivatives due to yaw rate. alpha, mach, alt, build

clnr Yawing-moment derivatives due to yaw
rate.

alpha, mach, alt, build

cllr Rolling-moment derivatives due to yaw rate. alpha, mach, alt, build

cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, build

clnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, build

cllp Rolling-moment derivatives due to roll rate. alpha, mach, alt, build

cnp Normal-force derivatives due to roll rate. alpha, mach, alt, build

cmp Pitching-moment derivatives due to roll
rate.

alpha, mach, alt, build

cap Axial-force derivatives due to roll rate. alpha, mach, alt, build

cnr Normal-force derivatives due to yaw rate. alpha, mach, alt, build

cmr Pitching-moment derivatives due to roll
rate.

alpha, mach, alt, build

car Axial-force derivatives due to yaw rate. alpha, mach, alt, build

Examples Read the 1976 version Digital DATCOM output file astdatcom.out:

aero = datcomimport('astdatcom.out')

Read the 1976 Digital DATCOM output file astdatcom.out using zeros
to replace data points where no DATCOM methods exist and displaying
status information in the MATLAB Command Window:

usenan = false;
aero = datcomimport('astdatcom.out', usenan, 1)

4-145

datcomimport

Assumptions
and
Limitations

The operational limitations of the 1976 version DATCOM apply to
the data contained in AERO. For more information on DATCOM
limitations, see [1], section 2.4.5.

USAF Digital DATCOM data for wing section, horizontal tail section,
vertical tail section and ventral fin section are not read.

References 1. AFFDL-TR-79-3032: The USAF Stability and Control DATCOM,
Volume 1, User’s Manual

2. AFRL-VA-WP-TR-1998-3009: MISSILE DATCOM, User’s Manual –
1997 FORTRAN 90 Revision

3. AFRL-RB-WP-TR-2009-3015: MISSILE DATCOM, User’s Manual
– 2008 Revision

4-146

dcm2alphabeta

Purpose Convert direction cosine matrix to angle of attack and sideslip angle

Syntax [a b] = dcm2alphabeta(n)

Description [a b] = dcm2alphabeta(n) calculates the angle of attack and sideslip
angle, a and b, for a given direction cosine matrix, n. n is a 3-by-3-by-m
matrix containing m orthogonal direction cosine matrices. a is an m
array of angles of attack. b is an m array of sideslip angles. n performs
the coordinate transformation of a vector in body-axes into a vector in
wind-axes. Angles of attack and sideslip angles are output in radians.

Examples Determine the angle of attack and sideslip angle from direction cosine
matrix:

dcm = [0.8926 0.1736 0.4162; ...
-0.1574 0.9848 -0.0734; ...
-0.4226 0 0.9063];

[alpha beta] = dcm2alphabeta(dcm)

alpha =

0.4363

beta =

0.1745

Determine the angle of attack and sideslip angle from multiple direction
cosine matrices:

dcm = [0.8926 0.1736 0.4162; ...
-0.1574 0.9848 -0.0734; ...
-0.4226 0 0.9063];

dcm(:,:,2) = [0.9811 0.0872 0.1730; ...
-0.0859 0.9962 -0.0151; ...
-0.1736 0 0.9848];

4-147

dcm2alphabeta

[alpha beta] = dcm2alphabeta(dcm)

alpha =

0.4363
0.1745

beta =

0.1745
0.0873

See Also angle2dcm, dcm2angle, dcmbody2wind

4-148

dcm2angle

Purpose Create rotation angles from direction cosine matrix

Syntax [r1 r2 r3] = dcm2angle(n)
[r1 r2 r3] = dcm2angle(n, s)
[r1 r2 r3] = dcm2angle(n, s, lim)

Description [r1 r2 r3] = dcm2angle(n) calculates the set of rotation angles, r1,
r2, r3, for a given direction cosine matrix, n. n is a 3-by-3-by-m matrix
containing m direction cosine matrices. r1 returns an m array of first
rotation angles. r2 returns an m array of second rotation angles. r3
returns an m array of third rotation angles. Rotation angles are output
in radians.

[r1 r2 r3] = dcm2angle(n, s) calculates the set of rotation angles,
r1, r2, r3, for a given direction cosine matrix, n, and a specified rotation
sequence, s.

The default rotation sequence is 'ZYX', where r1 is z-axis rotation, r2
is y-axis rotation, and r3 is x-axis rotation.

Supported rotation sequence strings are 'ZYX', 'ZYZ', 'ZXY', 'ZXZ',
'YXZ', 'YXY', 'YZX', 'YZY', 'XYZ', 'XYX', 'XZY', and 'XZX'.

[r1 r2 r3] = dcm2angle(n, s, lim) calculates the set of rotation
angles, r1, r2, r3, for a given direction cosine matrix, n, a specified
rotation sequence, s, and a specified angle constraint, lim. lim is a
string specifying either 'Default' or 'ZeroR3'. See “Assumptions and
Limitations” on page 4-150 for full definitions of angle constraints.

Examples Determine the rotation angles from direction cosine matrix:

dcm = [1 0 0; 0 1 0; 0 0 1];
[yaw, pitch, roll] = dcm2angle(dcm)
yaw =

0

pitch =

4-149

dcm2angle

0

roll =

0

Determine the rotation angles from multiple direction cosine matrices:

dcm = [1 0 0; 0 1 0; 0 0 1];

dcm(:,:,2) = [0.85253103550038 0.47703040785184 -0.21361840626067; ...

-0.43212157513194 0.87319830445628 0.22537893734811; ...

0.29404383655186 -0.09983341664683 0.95056378592206];

[pitch, roll, yaw] = dcm2angle(dcm, 'YXZ')

pitch =

0

0.3000

roll =

0

0.1000

yaw =

0

0.5000

Assumptions
and
Limitations

The 'Default' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ',
and 'XZY' implementations generate an r2 angle that lies between ±90
degrees, and r1 and r3 angles that lie between ±180 degrees.

The 'Default' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX',
and 'XZX' implementations generate an r2 angle that lies between 0
and 180 degrees, and r1 and r3 angles that lie between ±180 degrees.

4-150

dcm2angle

The 'ZeroR3' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ',
and 'XZY' implementations generate an r2 angle that lies between ±90
degrees, and r1 and r3 angles that lie between ±180 degrees. However,
when r2 is ±90 degrees, r3 is set to 0 degrees.

The 'ZeroR3' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX',
and 'XZX' implementations generate an r2 angle that lies between 0
and 180 degrees, and r1 and r3 angles that lie between ±180 degrees.
However, when r2 is 0 or ±180 degrees, r3 is set to 0 degrees.

See Also angle2dcm, dcm2quat, quat2dcm, quat2angle

4-151

dcm2latlon

Purpose Convert direction cosine matrix to geodetic latitude and longitude

Syntax [lat lon] = dcm2latlon(n)

Description [lat lon] = dcm2latlon(n) calculates the geodetic latitude and
longitude, lat and lon, for a given direction cosine matrix, n. n is a
3-by-3-by-m matrix containing m orthogonal direction cosine matrices.
lat is an m array of geodetic latitudes. lon is an m array of longitudes. n
performs the coordinate transformation of a vector in Earth-centered
Earth-fixed (ECEF) axes into a vector in north-east-down (NED) axes.
Geodetic latitudes and longitudes are output in degrees.

Examples Determine the geodetic latitude and longitude from direction cosine
matrix:

dcm = [0.3747 0.5997 0.7071; ...
0.8480 -0.5299 0; ...
0.3747 0.5997 -0.7071];

[lat lon] = dcm2latlon(dcm)

lat =

44.9995

lon =

-122.0005

Determine the geodetic latitude and longitude from multiple direction
cosine matrices:

dcm = [0.3747 0.5997 0.7071; ...
0.8480 -0.5299 0; ...
0.3747 0.5997 -0.7071];

dcm(:,:,2) = [-0.0531 0.6064 0.7934; ...
0.9962 0.0872 0; ...

4-152

dcm2latlon

-0.0691 0.7903 -0.6088];
[lat lon] = dcm2latlon(dcm)

lat =

44.9995
37.5028

lon =

-122.0005
-84.9975

See Also angle2dcm, dcm2angle, dcmecef2ned

4-153

dcm2quat

Purpose Convert direction cosine matrix to quaternion

Syntax q = dcm2quat(n)

Description q = dcm2quat(n) calculates the quaternion, q, for a given direction
cosine matrix, n. Input n is a 3-by-3-by-m matrix of orthogonal direction
cosine matrices. The direction cosine matrix performs the coordinate
transformation of a vector in inertial axes to a vector in body axes. q
returns an m-by-4 matrix containing m quaternions. q has its scalar
number as the first column.

Examples Determine the quaternion from direction cosine matrix:

dcm = [0 1 0; 1 0 0; 0 0 1];
q = dcm2quat(dcm)

q =

0.7071 0 0 0

Determine the quaternions from multiple direction cosine matrices:

dcm = [0 1 0; 1 0 0; 0 0 1];
dcm(:,:,2) = [0.4330 0.2500 -0.8660; ...

0.1768 0.9186 0.3536; ...
0.8839 -0.3062 0.3536];

q = dcm2quat(dcm)

q =

0.7071 0 0 0
0.8224 0.2006 0.5320 0.0223

See Also angle2dcm, dcm2angle, angle2quat, quat2dcm, quat2angle

4-154

dcmbody2wind

Purpose Convert angle of attack and sideslip angle to direction cosine matrix

Syntax n = dcmbody2wind(a, b)

Description n = dcmbody2wind(a, b) calculates the direction cosine matrix, n, for
given angle of attack and sideslip angle, a, b. a is an m array of angles
of attack. b is an m array of sideslip angles. n returns a 3-by-3-by-m
matrix containing m direction cosine matrices. n performs the coordinate
transformation of a vector in body-axes into a vector in wind-axes.
Angles of attack and sideslip angles are input in radians.

Examples Determine the direction cosine matrix from angle of attack and sideslip
angle:

alpha = 0.4363;
beta = 0.1745;
dcm = dcmbody2wind(alpha, beta)

dcm =

0.8926 0.1736 0.4162
-0.1574 0.9848 -0.0734
-0.4226 0 0.9063

Determine the direction cosine matrix from multiple angles of attack
and sideslip angles:

alpha = [0.4363 0.1745];
beta = [0.1745 0.0873];
dcm = dcmbody2wind(alpha, beta)

dcm(:,:,1) =

0.8926 0.1736 0.4162
-0.1574 0.9848 -0.0734
-0.4226 0 0.9063

4-155

dcmbody2wind

dcm(:,:,2) =

0.9811 0.0872 0.1730
-0.0859 0.9962 -0.0151
-0.1736 0 0.9848

See Also angle2dcm, dcm2alphabeta, dcm2angle

4-156

dcmecef2ned

Purpose Convert geodetic latitude and longitude to direction cosine matrix

Syntax n = dcmecef2ned(lat, lon)

Description n = dcmecef2ned(lat, lon) calculates the direction cosine matrix, n,
for a given set of geodetic latitude and longitude, lat, lon. lat is an m
array of geodetic latitudes. lon is an m array of longitudes. n returns a
3-by-3-by-m matrix containing m direction cosine matrices. n performs
the coordinate transformation of a vector in Earth-centered Earth-fixed
(ECEF) axes into a vector in north-east-down (NED) axes. Geodetic
latitudes and longitudes are input in degrees.

Examples Determine the direction cosine matrix from geodetic latitude and
longitude:

lat = 45;
lon = -122;
dcm = dcmecef2ned(lat, lon)

dcm =

0.3747 0.5997 0.7071
0.8480 -0.5299 0
0.3747 0.5997 -0.7071

Determine the direction cosine matrix from multiple geodetic latitudes
and longitudes:

lat = [45 37.5];
lon = [-122 -85];
dcm = dcmecef2ned(lat, lon)

dcm(:,:,1) =

0.3747 0.5997 0.7071
0.8480 -0.5299 0
0.3747 0.5997 -0.7071

4-157

dcmecef2ned

dcm(:,:,2) =

-0.0531 0.6064 0.7934
0.9962 0.0872 0

-0.0691 0.7903 -0.6088

See Also angle2dcm, dcm2angle, dcm2latlon

4-158

decyear

Purpose Calculate decimal year

Syntax dy = decyear(v)
dy = decyear(s,f)
dy = decyear(y,mo,d)
dy = decyear([y,mo,d])
dy = decyear(y,mo,d,h,mi,s)
dy = decyear([y,mo,d,h,mi,s])

Description dy = decyear(v) converts one or more date vectors, v, into decimal
year, dy. Input v can be an m-by-6 or m-by-3 matrix containing m full or
partial date vectors, respectively. decyear returns a column vector
of m decimal years.

A date vector contains six elements, specifying year, month, day,
hour, minute, and second. A partial date vector has three elements,
specifying year, month, and day. Each element of v must be a positive
double-precision number.

dy = decyear(s,f) converts one or more date strings, s, to decimal
year, dy, using format string f. s can be a character array where each
row corresponds to one date string, or a one-dimensional cell array of
strings. decyear returns a column vector of m decimal years, where m is
the number of strings in s.

All of the date strings in s must have the same format f, which must
be composed of date format symbols listed in the datestr function
reference page. Formats containing the letter Q are not accepted by
decyear.

Certain formats may not contain enough information to compute a date
number. In those cases, hours, minutes, and seconds default to 0, days
default to 1, months default to January, and years default to the current
year. Date strings with two-character years are interpreted to be within
the 100 years centered around the current year.

dy = decyear(y,mo,d) and dy = decyear([y,mo,d]) return the
decimal year for corresponding elements of the y,mo,d (year,month,day)

4-159

decyear

arrays. y, mo, and d must be arrays of the same size (or any of them
can be a scalar).

dy = decyear(y,mo,d,h,mi,s) and dy = decyear([y,mo,d,h,mi,s])
return the decimal year for corresponding elements of the
y,mo,d,h,mi,s (year,month,day,hour,minute,second) arrays. The six
arguments must be arrays of the same size (or any of them can be a
scalar).

Examples Calculate decimal year for May 24, 2005:

dy = decyear('24-May-2005','dd-mmm-yyyy')

dy =

2.0054e+003

Calculate decimal year for December 19, 2006:

dy = decyear(2006,12,19)

dy =

2.0070e+003

Calculate decimal year for October 10, 2004, at 12:21:00 p.m.:

dy = decyear(2004,10,10,12,21,0)

dy =

2.0048e+003

Assumptions
and
Limitations

The calculation of decimal year does not take into account leap seconds.

See Also juliandate, leapyear, mjuliandate

4-160

Aero.Animation.delete

Purpose Destroy animation object

Syntax delete(h)
h.delete

Description delete(h) and h.delete destroy the animation object h. This function
also destroys the animation object figure, and any objects that the
animation object contained (for example, bodies, camera, and geometry).

Input
Arguments

h Animation object.

Examples Delete the animation object, h.

h=Aero.Animation;
h.delete;

4-161

delete (Aero.FlightGearAnimation)

Purpose Destroy FlightGear animation object

Syntax delete(h)
h.delete

Description delete(h) and h.delete destroy the FlightGear animation object h.
This function also destroys the animation object timer, and closes the
socket that the FlightGear animation animation object contains.

Examples Delete the FlightGear animation object, h.

h=Aero.FlightGearAnimation;
h.delete;

See Also initialize

4-162

delete (Aero.VirtualRealityAnimation)

Purpose Destroy virtual reality animation object

Syntax delete(h)
h.delete

Description delete(h) and h.delete destroy the virtual reality animation object
h. This function also destroys the temporary file, if it exists, cleans up
the vrfigure object, the animation object timer, and closes the vrworld
object.

Examples Delete the virtual reality animation object, h.

h=Aero.VirtualRealityAnimation;
h.delete;

See Also initialize

4-163

dpressure

Purpose Compute dynamic pressure using velocity and density

Syntax q = dpressure(v, r)

Description q = dpressure(v, r) computes m dynamic pressures, q, from an m-by-3
array of velocities, v, and an array of m densities, r. v and r must have
the same length units.

Examples Determine dynamic pressure for velocity in feet per second and density
in slugs per feet cubed:

q = dpressure([84.3905 33.7562 10.1269], 0.0024)

q =

10.0365

Determine dynamic pressure for velocity in meters per second and
density in kilograms per meters cubed:

q = dpressure([25.7222 10.2889 3.0867], [1.225 0.3639])

q =

475.9252
141.3789

Determine dynamic pressure for velocity in meters per second and
density in kilograms per meters cubed:

q = dpressure([50 20 6; 5 0.5 2], [1.225 0.3639])

q =

4-164

dpressure

1.0e+003 *

1.7983
0.0053

See Also airspeed, machnumber

4-165

ecef2lla

Purpose Convert Earth-centered Earth-fixed (ECEF) coordinates to geodetic
coordinates

Syntax lla = ecef2lla(p)
lla = ecef2lla(p, model)
lla = ecef2lla(p, f, Re)

Description lla = ecef2lla(p) converts the m-by-3 array of ECEF coordinates,
p, to an m-by-3 array of geodetic coordinates (latitude, longitude and
altitude), lla. lla is in [degrees degrees meters]. p is in meters. The
default ellipsoid planet is WGS84.

lla = ecef2lla(p, model) is an alternate method for converting the
coordinates for a specific ellipsoid planet. Currently only 'WGS84' is
supported for model.

lla = ecef2lla(p, f, Re) is another alternate method for converting
the coordinates for a custom ellipsoid planet defined by flattening, f,
and the equatorial radius, Re, in meters.

Examples Determine latitude, longitude, and altitude at a coordinate:

lla = ecef2lla([4510731 4510731 0])

lla =

0 45.0000 999.9564

Determine latitude, longitude, and altitude at multiple coordinates,
specifying WGS84 ellipsoid model:

lla = ecef2lla([4510731 4510731 0; 0 4507609 4498719], 'WGS84')

lla =

0 45.0000 999.9564

4-166

ecef2lla

45.1358 90.0000 999.8659

Determine latitude, longitude, and altitude at multiple coordinates,
specifying custom ellipsoid model:

f = 1/196.877360;

Re = 3397000;

lla = ecef2lla([4510731 4510731 0; 0 4507609 4498719], f, Re)

lla =

1.0e+006 *

0 0.0000 2.9821

0.0000 0.0001 2.9801

See Also geoc2geod, geod2geoc, lla2ecef

4-167

fganimation (Aero.FlightGearAnimation)

Purpose Construct FlightGear animation object

Syntax h = fganimation
h = Aero.FlightGearAnimation

Description h = fganimation and h = Aero.FlightGearAnimation construct
a FlightGear animation object. The FlightGear animation object is
returned to h.

Examples Construct a FlightGear animation object, h:

h = fganimation

See Also Aero.FlightGearAnimation

4-168

findstartstoptimes (Aero.Body)

Purpose Return start and stop times of time series data

Syntax [tstart,tstop] = findstartstoptimes(h,tsdata)
[tstart,stop] = h.findstartstoptimes(tsdata)

Description [tstart,tstop] = findstartstoptimes(h,tsdata) and
[tstart,stop] = h.findstartstoptimes(tsdata) return the start
and stop times of time series data tsdata for the animation body object
h.

Examples Find the start and stop times of the time series data, tsdata.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d');
tsdata = [...

0, 1,1,1, 0,0,0; ...
10 2,2,2, 1,1,1;];

b.TimeSeriesSource = tsdata;
[tstart,tstop] = findstartstoptimes(b,tsdata);

See Also load

4-169

findstartstoptimes (Aero.Node)

Purpose Return start and stop times for time series data

Syntax [tstart,tstop] = findstartstoptimes(h,tsdata)
[tstart,stop] = h.findstartstoptimes(tsdata)

Description [tstart,tstop] = findstartstoptimes(h,tsdata) and
[tstart,stop] = h.findstartstoptimes(tsdata) return the start
and stop times of time series data tsdata for the virtual reality
animation object h.

Examples Find the start and stop times of the time series data, takeoffData.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

load takeoffData;

h.Nodes{7}.TimeseriesSource = takeoffData;

h.Nodes{7}.TimeseriesSourceType = 'StructureWith Time';

[tstart,stop]=h.Nodes{7}.findstartstoptimes;

4-170

flowfanno

Purpose Fanno line flow relations

Syntax [mach, T, P, rho, velocity, P0, fanno] = flowfanno(gamma,
fanno_flow, mtype)

Description [mach, T, P, rho, velocity, P0, fanno] = flowfanno(gamma,
fanno_flow, mtype) returns an array for each Fanno line flow
relation. This function calculates the arrays for a given set of specific
heat ratios (gamma), and any one of the Fanno flow types . You select
the Fanno flow type with mtype.

This function uses Fanno variables given by the following. F is the
Fanno parameter given by F = f*L/D. f is the friction coefficient. L is
the length of constant area duct required to achieve sonic flow. D is
the hydraulic diameter of the duct.

This function assumes that variables vary in one dimension only. It also
assumes that the main mechanism for the change of flow variables is
the change of cross-sectional area of the flow stream tubes.

If the temperature experiences large fluctuations, the perfect gas
assumption might be invalid. If the stagnation temperature is above
1500 K, do not assume constant specific heats. In this case, the medium
ceases to be a calorically perfect gas. Consider it a thermally perfect gas.
See 2 for thermally perfect gas correction factors. If the temperature is
so high that molecules dissociate and ionize (static temperature 5000 K
for air), you cannot assume a perfect gas.

Input
Arguments

gamma

Array of N specific heat ratios. gamma must be either a scalar or
an array of N real numbers greater than 1. gamma must be a
real, finite scalar greater than 1 for the following input modes:
subsonic total pressure ratio, supersonic total pressure ratio,
subsonic Fanno parameter, and supersonic Fanno parameter.

fanno_flow

4-171

flowfanno

Array of real numerical values for one Fanno flow. This argument
can be one of the following:

• Array of Mach numbers. flow_fanno must be a scalar or
an array of N real numbers greater than or equal to 0. If
flow_fanno and gamma are arrays, they must be the same size.

Use flow_fanno with the mtype value 'mach'. Because ’mach’
is the default of mtype, mtype is optional when this array is
the input mode.

• Array of temperature ratios. The temperature ratio is the
local static temperature over the reference static temperature
for sonic flow. This array must be a scalar or array of N real
numbers:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to (gamma+1)/2 (at Mach number equal 0)

Use flow_fanno with mtype value ’temp’.

• Array of pressure ratios. The pressure ratio is the local static
pressure over the reference static pressure for sonic flow.
flow_fanno must be a scalar or array of real numbers greater
than or equal to 0. If flow_fanno and gamma are arrays, they
must be the same size.

Use flow_fanno with mtype value ’pres’.

• Array of density ratios. The density ratio is the local density
over the reference density for sonic flow. flow_fanno must
be a scalar or array of real numbers. These numbers must be
greater than or equal to:

sqrt((gamma-1)/(gamma+1)) (as the Mach number approaches
infinity).

If flow_fanno and gamma are arrays, they must be the same
size.

4-172

flowfanno

Use flow_fanno with mtype value ’dens’.

• Array of velocity ratios. The velocity ratio is the local velocity
over the reference velocity for sonic flow. flow_fanno must be
a scalar or an array of N of real numbers:

- Greater than or equal to 0

- Less than or equal to sqrt((gamma+1)/(gamma-1)) (as the Mach
number approaches infinity)

If flow_fanno and gamma are both arrays, they must be the
same size.

Use flow_fanno with mtype value ’velo’.

• Scalar value of total pressure ratio. The total pressure ratio is
the local total pressure over the reference total pressure for
sonic flow. flow_fanno must be greater than or equal to 1.

Use flow_fanno with mtype values 'totalp' and 'totalpsup'.

• Scalar value for Fanno parameter. The Fanno parameter is
flow_fanno= f*L/D. f is the friction coefficient. L is the length
of constant area duct required to achieve sonic flow. D is the
hydraulic diameter of the duct. In subsonic mode, flow_fanno
must be greater than or equal to 0. In supersonic mode,
flow_fanno must be:

- Greater than or equal to 0 (at Mach number equal 1)

- Less than or equal to
(gamma+1)/(2*gamma)*log((gamma+1)/(gamma-1))-1/gamma (as
Mach number approaches infinity)

Use flow_fanno with mtype values ’fannosub’ and
’fannosup’.

mtype

A string that defines the input mode for the type of Fanno flow
in fanno_flow.

4-173

flowfanno

Type Description

'mach' Default Mach number

'temp' Temperature ratio

'pres' Pressure ratio

'dens' Density ratio

'velo' Velocity ratio

'totalpsub' Subsonic total pressure ratio

'totalpsup' Supersonic total pressure ratio

'fannosub' Subsonic Fanno parameter

'fannosup' Supersonic Fanno parameter

Output
Arguments

All outputs are the same size as the array inputs. If there are no array
inputs, all outputs are scalars.

mach

Array of Mach numbers.

T

Array of temperature ratios. The temperature ratio is the local
static temperature over the reference static temperature for sonic
flow.

P

Array of pressure ratios. The pressure ratio is the local static
pressure over the reference static pressure for sonic flow.

rho

Array of density ratio. The density ratio is the local density over
the reference density for sonic flow.

velocity

4-174

flowfanno

Array of velocity ratios. The velocity ratio is the local velocity over
the reference velocity for sonic flow.

P0

Array of stagnation (total) pressure ratio. The total pressure
ratio is the local total pressure over the reference total pressure
for sonic flow.

fanno

Array of Fanno parameters. The Fanno parameter is F = f*L/D.
f is the friction coefficient. L is the length of constant area duct
required to achieve sonic flow. D is the hydraulic diameter of the
duct.

Examples Calculate the Fanno line flow relations for air (gamma = 1.4) for subsonic
Fanno parameter 1.2. The following returns scalar values for mach, T,
P, rho, velocity, P0, and fanno.

[mach, T, P, rho, velocity, P0, fanno] = flowfanno(1.4, 1.2, 'fannosub')

Calculate the Fanno line flow relations for gases with specific heat
ratios given in the following 1 x 4 row array for the Mach number 0.5.
The following yields a 1 x 4 row array for mach, T, P, rho, velocity,
P0, and fanno.

gamma = [1.3, 1.33, 1.4, 1.67];

[mach, T, P, rho, velocity, P0, fanno] = flowfanno(gamma, 0.5)

Calculate the Fanno line flow relations for a specific heat ratio of 1.4
and range of temperature ratios from 0.40 to 0.70 in increments of
0.10. The following returns a 4 x 1 column array for mach, T, P, rho,
velocity, P0, and fanno.

[mach, T, P, rho, velocity, P0, fanno] = flowfanno(1.4, [1.1 1.2], 'temp')

4-175

flowfanno

Calculate the Fanno line flow relations for gases with specific heat ratio
and velocity ratio combinations as shown. The following returns a 1 x 2
array for mach, T, P, rho, velocity, P0, and fanno each. The elements
of each array correspond to the inputs element-wise.

gamma = [1.3, 1.4];
V = [0.53, 0.49];
[MACH, T, P, RHO, V, P0, F] = flowfanno(gamma, V, 'velo')

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

See Also flowisentropic | flownormalshock | flowprandtlmeyer |
flowrayleigh

4-176

flowisentropic

Purpose Isentropic flow ratios

Syntax [mach, T, P, rho, area] = flowisentropic(gamma,
flow, mtype)

Description [mach, T, P, rho, area] = flowisentropic(gamma, flow,
mtype) returns an array. This array contains an isentropic flow Mach
number (mach), temperature ratio (T), pressure ratio (P), density ratio
(rho), and area ratio (area). This function calculates these arrays given
a set of specific heat ratios (gamma), and any one of the isentropic flow
types. You select the isentropic flow with mtype.

This function assumes that variables vary in one dimension only. It also
assumes that the main mechanism for the change of flow variables is
the change of cross-sectional area of the flow stream tubes.

This function assumes that the environment is a perfect gas. In
the following instances, the function cannot assume a perfect gas
environment. If there is a large change in either temperature or
pressure without a proportionally large change in the other, the
function cannot assume a perfect gas environment. . If the stagnation
temperature is above 1500 K, do not assume that constant specific
heats. In this case, the medium ceases to be a calorically perfect
gas. Consider it a thermally perfect gas. See 2 for thermally perfect
gas correction factors. If the temperature is so high that molecules
dissociate and ionize (static temperature 5000 K for air), you cannot
assume a calorically or thermally perfect gas.

Input
Arguments

gamma

Array of N specific heat ratios. gamma must be a scalar or array
of N real numbers greater than 1. For subsonic area ratio input
mode and supersonic area ratio input mode, gamma must be a real,
finite scalar greater than 1.

flow

Array of real numerical values for one of the isentropic flow
relations. This argument can be one of the following:

4-177

flowisentropic

• Array of Mach numbers. flow must be a scalar or an array of
N real numbers greater than or equal to 0. If flow and gamma
are arrays, they must be the same size.

Use flow with the mtype value 'mach'. Because ’mach’ is the
default of mtype, mtype is optional when this array is the input
mode.

• Array of temperature ratios. The temperature ratio is the local
static temperature over the stagnation temperature. flowmust
be a scalar or an array of real numbers:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to 1 (at Mach number equal 0)

If flow and gamma are both arrays, they must be the same size.

Use flow with mtype value ’temp’.

• Array of pressure ratios. The pressure ratio is the local static
pressure over the stagnation pressure. flow must be a scalar
or an array of real numbers:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to 1 (at Mach number equal 0)

If flow and gamma are both arrays, they must be the same size.

Use flow with mtype value ’pres’.

• Array of density ratios. The density ratio is the local density
over the stagnation density. flow must be a scalar or an array
of real numbers:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to 1 (at Mach number equal 0)

If flow and gamma are both arrays, they must be the same size.

4-178

flowisentropic

Use flow with mtype value ’dens’.

• Scalar value of area ratio. flow must be a real value greater
than or equal to 1.

Use flow with mtype value ’sup’.

mtype

A string that defines the input mode for the isentropic flow in
flow.

Type Description

'mach' Default. Mach number.

'temp' Temperature ratio.

'pres' Pressure ratio.

'dens' Density ratio.

'sub' Subsonic area ratio. The subsonic area ratio is the
local subsonic stream tube area over the reference
stream tube area for sonic conditions.

'sup' Supersonic area ratio. The supersonic area ratio
is the local supersonic stream tube area over the
reference stream tube area for sonic conditions.

Output
Arguments

All outputs are the same size as the array inputs. If there are no array
inputs, all outputs are scalars.

mach

Array of Mach numbers.

T

Array of temperature ratios. The temperature ratio is the local
static temperature over the stagnation temperature.

P

4-179

flowisentropic

Array of pressure ratios. The pressure ratio is the local static
pressure over the stagnation pressure.

rho

Array of density ratios. The density ratio is the local density over
the stagnation density.

area

Array of area ratios. The area ratio is the local stream tube area
over the reference stream tube area for sonic conditions.

Examples Calculate the isentropic flow relations for air (gamma = 1.4) for a design
subsonic area ratio of 1.255. This example returns scalar values for
mach, T, P, rho, and area.

[mach, T, P, rho, area] = flowisentropic(1.4, 1.255, 'sub')

Calculate the isentropic flow relations for gases with specific heat ratios
given in the following 1 x 4 row array for the Mach number 0.5. This
example following returns a 1 x 4 row array for mach, T, P, rho, and area.

gamma = [1.3, 1.33, 1.4, 1.67];
[mach, T, P, rho, area] = flowisentropic(gamma, 0.5)

Calculate the isentropic flow relations for a specific heat ratio of
1.4. Also calculate range of temperature ratios from 0.40 to 0.70 in
increments of 0.10. This example returns a 4 x 1 column array for mach,
T, P, rho, and area.

[mach, T, P, rho, area] = flowisentropic(1.4, (0.40:0.10:0.70)', 'temp')

Calculate the isentropic flow relations for gases with provided specific
heat ratio and density ratio combinations. This example returns a 1 x 2

4-180

flowisentropic

array for mach, T, P, rho, and area each. The elements of each vector
correspond to the inputs element-wise.

gamma = [1.3, 1.4];

rho = [0.13, 0.9];

[mach, T, P, rho, area] = flowisentropic(gamma, rho , 'dens')

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

See Also flownormalshock | flowprandtlmeyer | flowfanno | flowrayleigh

4-181

flownormalshock

Purpose Normal shock relations

Syntax [mach, T, P, rho, downstream_mach, P0,
P1] = flownormalshock(gamma, normal_shock_relations,
mtype)

Description [mach, T, P, rho, downstream_mach, P0, P1] =
flownormalshock(gamma, normal_shock_relations,
mtype) produces an array for each normal shock relation
(normal_shock_relations). This function calculates these arrays for
a given set of specific heat ratios (gamma) and any one of the normal
shock relations (normal_shock_relations). mtype selects the normal
shock relations that normal_shock_relations represents. All ratios
are downstream value over upstream value. Consider upstream to be
before or ahead of the shock; downstream is after or behind the shock.

This function assumes that the medium is a calorically perfect gas. It
assumes that the flow is frictionless and adiabatic. It assumes that
the flow variables vary in one dimension only. It assumes that the
main mechanism for the change of flow variables is the change of
cross-sectional area of the flow stream tubes.

If the temperature experiences large fluctuations, the perfect gas
assumption might be invalid. If the stagnation temperature is above
1500 K, do not assume constant specific heats. In this case, the medium
ceases to be a calorically perfect gas. You must then consider it a
thermally perfect gas. See 2 for thermally perfect gas correction factors.
If the temperature is so high that molecules dissociate and ionize (static
temperature 5000 K for air), you cannot assume a perfect gas.

Input
Arguments

gamma

Array of N specific heat ratios. gamma must be either a scalar or an
array of N real numbers greater than 1. For temperature ratio,
total pressure ratio, and Rayleigh-Pitot ratio input modes, gamma
must be a real, finite scalar greater than 1.

normal_shock_relations

4-182

flownormalshock

Array of real numerical values for one of the normal shock
relations. This argument can be one of the following:

• Array of upstream Mach numbers. This array must be a scalar
or an array of N real numbers greater than or equal to 1. If
normal_shock_relations and gamma are arrays, they must
be the same size.

Use normal_shock_relations with mtype value 'mach'.
Because ’mach’ is the default of mtype, mtype is optional when
this array is the input mode.

• Scalar value of temperature ratio. The temperature ratio is the
static temperature downstream of the shock over the static
temperature upstream of the shock. normal_shock_relations
must be a real scalar greater than or equal to 1.

Use normal_shock_relations with mtype value ’temp’.

• Array of pressure ratios. The pressure ratio is the static
pressure downstream of the shock over the static pressure
upstream of the shock. normal_shock_relations must be a
scalar or array of real numbers greater than or equal to 1. If
normal_shock_relations and gamma are arrays, they must
be the same size.

Use normal_shock_relations with mtype value ’pres’.

• Array of density ratios. The density ratio is the density of the
fluid downstream of the shock over the density upstream of
the shock. normal_shock_relations must a scalar or array of
real numbers be:

- Greater than or equal to 1 (at Mach number equal 1)

- Less than or equal to (gamma+1)/(gamma-1) (as the Mach
number approaches infinity)

If normal_shock_relations and gamma are arrays, they must
be the same size. Use normal_shock_relations with mtype
value ’dens’.

4-183

flownormalshock

• Array of downstream Mach numbers.
normal_shock_relations must be scalar or array of real
numbers:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to sqrt((gamma-1)/(2*gamma)) (at Mach
number equal 1)

If normal_shock_relations and gamma are arrays, they must
be the same size. Use normal_shock_relations with mtype
value ’down’.

• Scalar value of total pressure ratio. The total pressure ratio
is the total pressure downstream of the shock over the total
pressure upstream of the shock. normal_shock_relations
must be:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to 1 (at Mach number equal 1)

If normal_shock_relations and gamma are both arrays, they
must be the same size. Use normal_shock_relations with
mtype value 'totalp'.

• Scalar value of Rayleigh-Pitot ratio. The Rayleigh-Pitot ratio
is the static pressure upstream of the shock over the total
pressure downstream of the shock. normal_shock_relations
must be:

- Real scalar greater than or equal to 0 (as the Mach number
approaches infinity)

- Less than or equal to ((gamma+1)/2)^(-gamma/(gamma-1)) (at
Mach number equal 1)

If normal_shock_relations and gamma are both arrays, they
must be the same size. Use normal_shock_relations with
mtype value 'pito'.

4-184

flownormalshock

mtype

A string that defines the input mode for the normal shock
relations in normal_shock_relations.

Type Description

'mach' Default. Mach number.

'temp' Temperature ratio.

'pres' Pressure ratio.

'dens' Density ratio.

'velo' Velocity ratio.

'totalp' Total pressure ratio.

'pito' Rayleigh-Pitot ratio.

Output
Arguments

mach

Array of upstream Mach numbers.

P

Array of pressure ratios. The pressure ratio is the static pressure
downstream of the shock over the static pressure upstream of
the shock.

T

Array of temperature ratios. The temperature ratio is the static
temperature downstream of the shock over the static temperature
upstream of the shock.

rho

Array of density ratios. The density ratio is the density of the fluid
downstream of the shock over the density upstream of the shock.

downstream_mach

Array of downstream Mach numbers.

4-185

flownormalshock

P0

Array of total pressure ratios. The total pressure ratio is the
total pressure downstream of the shock over the total pressure
upstream of the shock.

P1

Array of Rayleigh-Pitot ratios. The Rayleigh-Pitot ratio is the
static pressure upstream of the shock over the total pressure
downstream of the shock.

Examples Calculate the normal shock relations for air (gamma = 1.4) for total
pressure ratio of 0.61. The following returns scalar values for mach, T, P,
rho, downstream_mach, P0, and P1.

[mach, T, P, rho, downstream_mach, P0, P1] = flownormalshock(1.4, 0.61, 'totalp')

Calculate the normal shock relations for gases with specific heat ratios
given in the following 1 x 4 row array for upstream Mach number 1.5.
The follow yields a 1 x 4 array for mach, T, P, rho, downstream_mach,
P0, and P1.

gamma = [1.3, 1.33, 1.4, 1.67];

[mach, T, P, rho, downstream_mach, P0, P1] = flownormalshock(gamma, 1.5)

Calculate the normal shock relations for a specific heat ratio of
1.4 and range of density ratios from 2.40 to 2.70 in increments of
0.10. The following returns a 4 x 1 column array for mach, T, P, rho,
downstream_mach, P0, and P1.

[mach, T, P, rho, downstream_mach, P0, P1] = flownormalshock(1.4,...

(2.4:.1:2.7)', 'dens')

4-186

flownormalshock

Calculate the normal shock relations for gases with specific heat ratio
and downstream Mach number combinations as shown. The following
example returns a 1 x 2 array for mach, T, P, rho, downstream_mach,
P0, and P1 each, where the elements of each vector corresponds to the
inputs element-wise.

gamma = [1.3, 1.4];

downstream_mach = [.34, .49];

[mach, T, P, rho, downstream_mach, P0, P1] = flownormalshock(gamma,...

downstream_mach, 'down')

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

See Also flowisentropic | flowprandtlmeyer | flowfanno | flowrayleigh

4-187

flowprandtlmeyer

Purpose Calculate Prandtl-Meyer functions for expansion waves

Syntax [mach, nu, mu] = flowprandtlmeyer(gamma,
prandtlmeyer_array,

mtype)

Description [mach, nu, mu] = flowprandtlmeyer(gamma,
prandtlmeyer_array, mtype) calculates the following: array of Mach
numbers, mach, Prandtl-Meyer angles (nu in degrees) and Mach angles
(mu in degrees). flowprandtlmeyer calculates these arrays for a given
set of specific heat ratios, gamma, and any one of the Prandtl-Meyer
types. You select the Prandtl-Meyer type with mtype.

The function assumes that the flow is two-dimensional. The function
also assumes a smooth and gradual change in flow properties through
the expansion fan.

Note, this function assumes that the environment is a perfect gas. In
the following instances, it cannot assume a perfect gas environment.
If there is a large change in either temperature or pressure without a
proportionally large change in the other, it cannot assume a perfect
gas environment. If the stagnation temperature is above 1500 K, the
function cannot assume constant specific heats. In this case, you must
consider it a thermally perfect gas. See 2 for thermally perfect gas
correction factors. The local static temperature might be so high that
molecules dissociate and ionize (static temperature 5000 K for air). In
this case, you cannot assume a calorically or thermally perfect gas.

Input
Arguments

gamma

Array of N specific heat ratios. gamma must be a scalar or array
of N real numbers greater than 1. For subsonic area ratio input
mode and supersonic area ratio input mode, gamma must be a real,
finite scalar greater than 1.

prandtlmeyer_array

Array of real numerical values for one of the Prandtl-Meyer types.
This argument can be one of the following:

4-188

flowprandtlmeyer

• Array of Mach numbers. This array must be a scalar or
an array of N real numbers greater than or equal to 0. If
prandtlmeyer_array and gamma are arrays, they must be the
same size.

Use prandtlmeyer_array with mtype value 'mach'. Note,
because ’mach’ is the default of mtype, mtype is optional when
this array is the input mode.

• Scalar value for Prandtl-Meyer angle in degrees. This value is
the angle change required for a Mach 1 flow to achieve a given
Mach number after expansion. prandtlmeyer_array must be:

- Real scalar greater than or equal to 0 (at Mach number
equal 1)

- Less than or equal to 90 * (sqrt((gamma+1)/(gamma-1)) - 1) (as
the Mach number approaches infinity).

Use prandtlmeyer_array with mtype value 'nu'.

• Array of Mach angles in degrees. These values are the angles
between the flow direction and the lines of pressure disturbance
caused by supersonic motion. The Mach angle is a function of
Mach number only. prandtlmeyer_array must be a scalar or
array of N real numbers that are:

- Greater than or equal to 0 (as the Mach number approaches
infinity).

- Less than or equal to 90 (at Mach number equal 1).

Use prandtlmeyer_array with mtype value 'mu'.

mtype

A string for selecting the isentropic flow variable represented by
prandtlmeyer_array.

4-189

flowprandtlmeyer

Type Description

'mach' Default. Mach number..

'nu' Prandtl-Meyer angle

'mu' Mach angle.

Output
Arguments

mach

Array of Mach numbers. In Prandtl-Meyer angle input mode,
mach outputs are the same size as the array input or array inputs.
If there are no array inputs, mach is a scalar.

nu

Array of Prandtl-Meyer angles. The Prandtl-Meyer angle is the
angle change required for a Mach 1 flow to achieve a given Mach
number after expansion.

mu

Array of Mach angles. The Mach angle is between the flow
direction and the lines of pressure disturbance caused by
supersonic motion.

Examples Calculate the Prandtl-Meyer relations for air (gamma = 1.4) for
Prandtl-Meyer angle 61 degrees. The following returns a scalar for
mach, nu, and mu.

[mach, nu, mu] = flowprandtlmeyer(1.4, 61, 'nu')

Calculate the Prandtl-Meyer functions for gases with specific heat
ratios. The following yields a 1 x 4 array for nu, but only a scalar for
mach and mu.

gamma = [1.3, 1.33, 1.4, 1.67];
[mach, nu, mu] = flowprandtlmeyer(gamma, 1.5)

4-190

flowprandtlmeyer

Calculate the Prandtl-Meyer angles for a specific heat ratio of 1.4 and
range of Mach angles from 40 degrees to 70 degrees. This example uses
increments of 10 degrees. The following returns a 4 x 1 column array
for mach, nu, and mu.

[mach, nu, mu] = flowprandtlmeyer(1.4, (40:10:70)', 'mu')

Calculate the Prandtl-Meyer relations for gases with specific heat ratio
and Mach number combinations as shown. The following returns a 1 x 2
array for nu and mu each, where the elements of each vector correspond
to the inputs element-wise.

gamma = [1.3, 1.4];
prandtlmeyer_array = [1.13, 9];
[mach, nu, mu] = flowprandtlmeyer(gamma,prandtlmeyer_array)

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

See Also flowisentropic | flownormalshock | flowrayleigh | flowfanno

4-191

flowrayleigh

Purpose Rayleigh line flow relations

Syntax [mach, T, P, rho, velocity, T0, P0] = flowrayleigh(gamma,
rayleigh_flow, mtype)

Description [mach, T, P, rho, velocity, T0, P0] = flowrayleigh(gamma,
rayleigh_flow, mtype) returns an array for each Rayleigh line flow
relation. This function calculates these arrays for a given set of specific
heat ratios (gamma), and any one of the Rayleigh line flow types. You
select the Rayleigh flow type with mtype.

This function assumes that the medium is a calorically perfect gas in
a constant area duct. It assumes that the flow is steady, frictionless,
and one dimensional. It also assumes that the main mechanism for the
change of flow variables is heat transfer.

This function assumes that the environment is a perfect gas. In the
following instances, it cannot assume a perfect gas environment. If
there is a large change in either temperature or pressure without a
proportionally large change in the other, it cannot assume a perfect gas
environment. If the stagnation temperature is above 1500 K, do not
assume constant specific heats. In this case, the medium ceases to be
a calorically perfect gas; you must then consider it a thermally perfect
gas. See 2 for thermally perfect gas correction factors. The local static
temperature might be so high that molecules dissociate and ionize
(static temperature 5000 K for air). In this case, you cannot assume a
calorically or thermally perfect gas.

Input
Arguments

gamma

Array of N specific heat ratios. gamma must be either a scalar or
an array of N real numbers greater than 1. gamma must be a real,
finite scalar greater than 1 for the following input modes: low
speed temperature ratio, high speed temperature ratio, subsonic
total temperature, supersonic total temperature, subsonic total
pressure, and supersonic total pressure.

rayleigh_flow

4-192

flowrayleigh

Array of real numerical values for one Rayleigh line flow. This
argument can be one of the following:

• Array of Mach numbers. This array must be a scalar or an array
of N real numbers greater than or equal to 0. If rayleigh_flow
and gamma are arrays, they must be the same size.

Use rayleigh_flow with mtype value 'mach'. Because ’mach’
is the default of mtype, mtype is optional when this array is
the input mode.

• Scalar value of temperature ratio. The temperature ratio is the
local static temperature over the reference static temperature
for sonic flow. rayleigh_flow must be a real scalar:

- Greater than or equal to 0 (at the Mach number equal 0 for
low speeds or as Mach number approaches infinity for high
speeds)

- Less than or equal to 1/4*(gamma+1/gamma)+1/2 (at mach =
1/sqrt(gamma))

Use rayleigh_flowwith mtype values ’templo’ and ’temphi’.

• Array of pressure ratios. The pressure ratio is the local static
pressure over the reference static pressure for sonic flow.
rayleigh_flow must be a scalar or array of real numbers less
than or equal to gamma+1 (at the Mach number equal 0). If
rayleigh_flow and gamma are arrays, they must be the same
size.

Use rayleigh_flow with mtype value ’pres’.

• Array of density ratios. The density ratio is the local density
over the reference density for sonic flow. rayleigh_flow must
be a scalar or array of real numbers. These numbers must be
greater than or equal to:

gamma/(gamma+1) (as Mach number approaches infinity)

If rayleigh_flow and gamma are arrays, they must be the same
size.

4-193

flowrayleigh

Use rayleigh_flow with mtype value ’dens’.

• Array of velocity ratios. The velocity ratio is the local velocity
over the reference velocity for sonic flow. rayleigh_flow must
be a scalar or an array of N real numbers:

- Greater than or equal to 0

- Less than or equal to (gamma+1)/gamma (as Mach number
approaches infinity)

If rayleigh_flow and gamma are both arrays, they must be
the same size.

Use rayleigh_flow with mtype value 'velo'.

• Scalar value of total temperature ratio. The total temperature
ratio is the local stagnation temperature over the reference
stagnation temperature for sonic flow. In subsonic mode,
rayleigh_flow must be a real scalar:

- Greater than or equal to 0 (at the Mach number equal 0)

- Less than or equal to 1 (at the Mach number equal 1)

In supersonic mode, rayleigh_flow must be a real scalar:

- Greater than or equal to
(gamma+1)^2*(gamma-1)/2/(gamma^2*(1+(gamma-1)/2))) (as
Mach number approaches infinity)

- Less than or equal to 1 (at the Mach number equal 1)

Use rayleigh_flow with the mtype values 'totaltsub' and
'totaltsup'.

• Scalar value of total pressure ratio. The total pressure ratio
is the local stagnation pressure over the reference stagnation
pressure for sonic flow. In subsonic mode, rayleigh_flow must
be a real scalar.

- Greater than or equal to 1 (at the Mach number equal 1)

4-194

flowrayleigh

- Less than or equal to
(1+gamma)*(1+(gamma-1)/2)^(-gamma/(gamma-1)) (at Mach
number equal 0)

In supersonic mode, rayleigh_flow must be a real scalar
greater than or equal to 1.

Use rayleigh_flow with mtype values 'totalpsub' and
'totalpsup'.

mtype

A string that defines the input mode for the Rayleigh flow in
rayleigh_flow.

Type Description

'mach' Default. Mach number.

'templo' Low speed static temperature ratio. The
low speed temperature ratio is the local
static temperature over the reference sonic
temperature. This ratio for when the Mach
number of the upstream flow is less than the
critical Mach number of 1/sqrt(gamma).

'temphi' High speed static temperature ratio. The
high speed temperature ratio is the local
static temperature over the reference sonic
temperature. This ratio is for when the Mach
number of the upstream flow is greater than the
critical Mach number of 1/sqrt(gamma).

'pres' Pressure ratio.

'dens' Density ratio.

'velo' Velocity ratio.

'totaltsub' Subsonic total temperature ratio.

'totaltsup' Supersonic total temperature ratio.

4-195

flowrayleigh

Type Description

'totalpsub' Subsonic total pressure ratio.

'totalpsup' Supersonic total pressure ratio.

Output
Arguments

All output ratios are static conditions over the sonic conditions. All
outputs are the same size as the array inputs. If there are no array
inputs, all outputs are scalars.

mach

Array of Mach numbers.

T

Array of temperature ratios. The temperature ratio is the local
static temperature over the reference static temperature for sonic
flow.

P

Array of pressure ratios. The pressure ratio is the local static
pressure over the reference static pressure for sonic flow.

rho

Array of density ratio. The density ratio is the local density over
the reference density for sonic flow.

velocity

Array of velocity ratios. The velocity ratio is the local velocity over
the reference velocity for sonic flow.

T0

Array of total temperature ratios. The temperature ratio is the
local static temperature over the reference static temperature
for sonic flow.

P0

4-196

flowrayleigh

Array of total pressure ratios. The total pressure ratio is the
local stagnation pressure over the reference stagnation pressure
for sonic flow.

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

Examples Calculate the Rayleigh line flow relations for air (gamma = 1.4) for
supersonic total pressure ratio 1.2. This example returns scalar values
for mach, T, P, rho, velocity, T0, and P0.

[mach, T, P, rho, velocity, T0, P0] = flowrayleigh(1.4, 1.2, 'totalpsup')

Calculate the Rayleigh line flow relations for gases with specific heat
ratios given in the following 1 x 4 row array for the Mach number 0.5.
This example yields a 1 x 4 row array for mach, T, P, rho, velocity,
T0, and P0.

gamma = [1.3, 1.33, 1.4, 1.67];

[mach, T, P, rho, velocity, T0, P0] = flowrayleigh(gamma, 0.5)

Calculate the Rayleigh line flow relations for a specific heat ratio of 1.4
and high speed temperature ratio 0.70. The following returns scalar
values for mach, T, P, rho, velocity, T0, and P0.

[mach, T, P, rho, velocity, T0, P0] = flowrayleigh(1.4, 0.70, 'temphi')

Calculate the Rayleigh line flow relations for gases with specific heat
ratio and static pressure ratio combinations as shown. This example
returns a 1 x 2 array for mach, T, P, rho, velocity, T0, and P0 each. The
elements of each array correspond to the inputs element-wise.

4-197

flowrayleigh

gamma = [1.3, 1.4];

P = [0.13, 1.7778];

[mach, T, P, rho, velocity, T0, P0] = flowrayleigh(gamma, P, 'pres')

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

See Also flowisentropic | flownormalshock | flowprandtlmeyer | flowfanno

4-198

generatePatches (Aero.Body)

Purpose Generate patches for body with loaded face, vertex, and color data

Syntax generatePatches(h, ax)
h.generatePatches(ax)

Description generatePatches(h, ax) and h.generatePatches(ax) generate
patches for the animation body object h using the loaded face, vertex,
and color data in ax.

Examples Generate patches for b using the axes, ax.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d');
f = figure;
ax = axes;
b.generatePatches(ax);

See Also load

4-199

GenerateRunScript (Aero.FlightGearAnimation)

Purpose Generate run script for FlightGear flight simulator

Syntax GenerateRunScript(h)
h.GenerateRunScript

Description GenerateRunScript(h) and h.GenerateRunScript generate a run
script for FlightGear flight simulator using the following FlightGear
animation object properties:

OutputFileName Specify the name of the output
file. The file name is the name
of the command you will use to
start FlightGear with these initial
parameters. The default value is
'runfg.bat'.

FlightGearBaseDirectory Specify the name of your
FlightGear installation
folder. The default value is
'D:\Applications\FlightGear'.

GeometryModelName Specify the name of the
folder containing the desired
model geometry in the
FlightGear\data\Aircraft
folder. The default value is
'HL20'.

DestinationIpAddress Specify your destination IP
address. The default value is
'127.0.0.1'.

DestinationPort Specify your network flight
dynamics model (fdm) port. This
destination port should be an
unused port that you can use
when you launch FlightGear. The
default value is '5502'.

4-200

GenerateRunScript (Aero.FlightGearAnimation)

AirportId Specify the airport ID. The list of
supported airports is available in
the FlightGear interface, under
Location. The default value is
'KSFO'.

RunwayId Specify the runway ID. The default
value is '10L'.

InitialAltitude Specify the initial altitude of the
aircraft, in feet. The default value
is 7224 feet.

InitialHeading Specify the initial heading of the
aircraft, in degrees. The default
value is 113 degrees.

OffsetDistance Specify the offset distance of the
aircraft from the airport, in miles.
The default value is 4.72 miles.

OffsetAzimuth Specify the offset azimuth of the
aircraft, in degrees. The default
value is 0 degrees.

Examples Create a run script, runfg.bat, to start FlightGear flight simulator
using the default object settings:

h = fganimation
GenerateRunScript(h)

Create a run script, myscript.bat, to start FlightGear flight simulator
using the default object settings:

h = fganimation
h.OutputFileName = 'myscript.bat'
GenerateRunScript(h)

See Also initialize, play,update

4-201

geoc2geod

Purpose Convert geocentric latitude to geodetic latitude

Syntax geodeticLatitude = geoc2geod(geocentricLatitude, radii)
geodeticLatitude = geoc2geod(geocentricLatitude, radii,

model)
geodeticLatitude = geoc2geod(geocentricLatitude, radii,

flattening, equatorialRadius)

Description geodeticLatitude = geoc2geod(geocentricLatitude, radii)
converts an array of m-by-1 geocentric latitudes and an array of radii
from the center of the planet into an array of m-by-1 geodetic latitudes.

geodeticLatitude = geoc2geod(geocentricLatitude, radii,
model) converts for a specific ellipsoid planet.

geodeticLatitude = geoc2geod(geocentricLatitude, radii,
flattening, equatorialRadius) converts for a custom ellipsoid
planet defined by flattening and the equatorial radius.

The function uses geometric relationships to calculate the geodetic
latitude in this noniterative method.

This function has the limitation that this implementation generates a
geodetic latitude that lies between ±90 degrees.

Input
Arguments

geocentricLatitude

Array of m-by-1 geocentric latitudes, in degrees.

radii

Array of radii from the center of the planet, in meters.

model

Specific ellipsoid planet specified as a string. This function
supports only 'WGS84'.

flattening

Custom ellipsoid planet defined by flattening.

4-202

geoc2geod

equatorialRadius

Equatorial radius, in meters.

Output
Arguments

geodeticLatitude

Array of m-by-1 geodetic latitudes, in degrees.

Examples Determine geodetic latitude given a geocentric latitude and radius:

gd = geoc2geod(45, 6379136)

gd =

45.1921

Determine geodetic latitude at multiple geocentric latitudes, given a
radius, and specifying WGS84 ellipsoid model:

gd = geoc2geod([0 45 90], 6379136, 'WGS84')

gd =

0 45.1921 90.0000

Determine geodetic latitude at multiple geocentric latitudes, given a
radius, and specifying custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
gd = geoc2geod([0 45 90], 6379136, f, Re)

gd =

4-203

geoc2geod

0 45.1550 90.0000

References Jackson, E.B., Manual for a Workstation-based Generic Flight
Simulation Program (LaRCsim) Version 1.4, NASA TM 110164, April
1995

Hedgley, D. R., Jr., An Exact Transformation from Geocentric to Geodetic
Coordinates for Nonzero Altitudes, NASA TR R-458, March, 1976

Clynch, J. R., Radius of the Earth — Radii Used
in Geodesy, Naval Postgraduate School, 2002,
http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, NY, 1992

Edwards, C. H., and D. E. Penny, Calculus and Analytical Geometry,
2nd Edition, Prentice-Hall, Englewood Cliffs, NJ, 1986

See Also geod2geoc | ecef2lla | lla2ecef

4-204

http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf

geocradius

Purpose Estimate radius of ellipsoid planet at geocentric latitude

Syntax r = geocradius(lambda)
r = geocradius(lambda, model)
r = geocradius(lambda, f, Re)

Description r = geocradius(lambda) estimates the radius, r, of an ellipsoid planet
at a particular geocentric latitude, lambda. lambda is in degrees. r is in
meters. The default ellipsoid planet is WGS84.

r = geocradius(lambda, model) is an alternate method for
estimating the radius for a specific ellipsoid planet. Currently only
'WGS84' is supported for model.

r = geocradius(lambda, f, Re) is another alternate method for
estimating the radius for a custom ellipsoid planet defined by flattening,
f, and the equatorial radius, Re, in meters.

Examples Determine radius at 45 degrees latitude:

r = geocradius(45)

r =

6.3674e+006

Determine radius at multiple latitudes:

r = geocradius([0 45 90])

r =

1.0e+006 *

6.3781 6.3674 6.3568

4-205

geocradius

Determine radius at multiple latitudes, specifying WGS84 ellipsoid
model:

r = geocradius([0 45 90], 'WGS84')

r =

1.0e+006 *

6.3781 6.3674 6.3568

Determine radius at multiple latitudes, specifying custom ellipsoid
model:

f = 1/196.877360;
Re = 3397000;
r = geocradius([0 45 90], f, Re)

r =

1.0e+006 *

3.3970 3.3883 3.3797

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, NY, 1992

Zipfel, P. H., and D. E. Penny, Modeling and Simulation of Aerospace
Vehicle Dynamics, AIAA Education Series, Reston, VA, 2000

See Also geoc2geod, geod2geoc

4-206

geod2geoc

Purpose Convert geodetic latitude to geocentric latitude

Syntax gc = geod2geoc(gd, h)
gc = geod2geoc(gd, h, model)
gc = geod2geoc(gd, h, f, Re)

Description gc = geod2geoc(gd, h) converts an array of m geodetic latitudes, gd,
and an array of mean sea level altitudes, h, into an array of m geocentric
latitudes, gc. Both gc and gd are in degrees. h is in meters.

gc = geod2geoc(gd, h, model) is an alternate method for converting
from geodetic to geocentric latitude for a specific ellipsoid planet.
Currently only 'WGS84' is supported for model.

gc = geod2geoc(gd, h, f, Re) is another alternate method for
converting from geodetic to geocentric latitude for a custom ellipsoid
planet defined by flattening, f, and the equatorial radius, Re, in meters.

Examples Determine geocentric latitude given a geodetic latitude and altitude:

gc = geod2geoc(45, 1000)

gc =

44.8076

Determine geocentric latitude at multiple geodetic latitudes and
altitudes, specifying WGS84 ellipsoid model:

gc = geod2geoc([0 45 90], [1000 0 2000], 'WGS84')

gc =

0
44.8076
90.0000

4-207

geod2geoc

Determine geocentric latitude at multiple geodetic latitudes, given an
altitude and specifying custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
gc = geod2geoc([0 45 90], 2000, f, Re)

gc =

0
44.7084
90.0000

Assumptions
and
Limitations

This implementation generates a geocentric latitude that lies between
±90 degrees.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, NY, 1992

See Also geoc2geod, ecef2lla, lla2ecef

4-208

geoidegm96

Purpose Calculate geoid height as determined from EGM96 Geopotential Model

Note geoidegm96 will be removed in a future version. Use
geoidheight instead.

Syntax N = geoidegm96(lat, long)
N = geoidegm96(lat, long, action)

Description N = geoidegm96(lat, long) calculates the geoid height as determined
from the EGM96 Geopotential Model. It calculates geoid heights to 0.01
meters. This function interpolates geoid heights from a 15-minute grid
of point values in the tide-free system, using the EGM96 Geopotential
Model to the degree and order 360. The geoid undulations are relative
to the WGS84 ellipsoid.

N = geoidegm96(lat, long, action) calculates the geoid height
as determined from the EGM96 Geopotential Model. This function
performs action if latitude or longitude are out of range.

Inputs required by geoidegm96:

lat An array of m geocentric latitudes,
in degrees, where north latitude is
positive and south latitude is negative.
lat must be of type single or double.
If lat is not within the range -90 to
90, inclusive, this function wraps the
value to be within the range.

long An array of m geocentric longitudes,
in degrees, where east longitude
is positive and west longitude is
negative. long must be of type single
or double. If long is not within the
range 0 to 360 inclusive, this function

4-209

geoidegm96

wraps the value to be within the
range.

action A string to determine action
for out-of-range input. Specify
if out-of-range input invokes a
'Warning', 'Error', or no action
('None'). The default is 'Warning'.

Examples Calculate the geoid height at 42.4 degrees N latitude and 71.0 degrees
E longitude.

N = geoidegm96(42.4, 71.0)

Calculate the geoid height at two different locations, with out-of-range
actions generating warnings.

N = geoidegm96([39.3,33.4], [-77.2, 36.5])

Calculate the geoid height with latitude wrapping, with out-of-range
actions displaying no warnings.

N = geoidegm96(100,150,'None')

Limitations This function has the limitations of the 1996 Earth
Geopotential Model. For more information, see
http://www.ngdc.noaa.gov/seg/gravity/document/html/egm96.shtml.

The WGS84 EGM96 geoid undulations have an error range of +/-0.5 to
+/-1.0 meters worldwide.

References NIMA TR8350.2: “Department of Defense World Geodetic System 1984,
Its Definition and Relationship with Local Geodetic Systems.”

NASA/TP-1998-206861: “The Development of the Joint NASA GSFC
and NIMA Geopotential Model EGM96”

National Geospatial-Intelligence Agency Website:
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html

4-210

http://www.ngdc.noaa.gov/seg/gravity/document/html/egm96.shtml
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html

geoidegm96

See Also gravitywgs84

4-211

geoidheight

Purpose Calculate geoid height

Syntax N = geoidheight(latitude,longitude)
N = geoidheight(latitude, longitude, modelname)
N = geoidheight(latitude, longitude, action)
N = geoidheight(latitude, longitude, modelname, action)
N = geoidheight(latitude, longitude, ’Custom’, datafile)
N = geoidheight(latitude, longitude, ’Custom’, datafile,

action)

Description N = geoidheight(latitude,longitude) calculates the geoid height
using the EGM96 Geopotential Model. For this model, it calculates
these geoid heights to an accuracy of 0.01 m. It interpolates an array
of m geoid heights at m geocentric latitudes, latitude, and m geocentric
longitudes, longitude.

N = geoidheight(latitude, longitude, modelname) calculates the
geoid height using the model, modelname.

N = geoidheight(latitude, longitude, action) calculates the geoid
height using the EGM96 Geopotential Model. This function performs
action if latitude or longitude are out of range.

N = geoidheight(latitude, longitude, modelname, action)
calculates the geoid height using modelname.

N = geoidheight(latitude, longitude, ’Custom’, datafile)
calculates the geoid height using a custom model that datafile defines.

N = geoidheight(latitude, longitude, ’Custom’, datafile, action)
calculates the geoid height using the custom model. This function
performs action if latitude or longitude are out of range.

Tips • This function interpolates geoid heights from a grid of point values in
the tide-free system.

• When using the EGM96 Model, this function has the limitations of
the 1996 Earth Geopotential Model.

4-212

geoidheight

• When using the EGM2008 Model, this function has the limitations of
the 2008 Earth Geopotential Model.

• The interpolation scheme wraps over the poles to allow for geoid
height calculations at and near pole locations.

• The geoid undulations for the EGM96 and EGM2008 models are
relative to the WGS84 ellipsoid.

• The WGS84 EGM96 geoid undulations have an error range of +/– 0.5
to +/– 1.0 m worldwide.

Input
Arguments

latitude

An array of m geocentric latitudes, in degrees, where north latitude
is positive and south latitude is negative. latitude must be of
type single or double. If latitude is not within the range –90 to
90, inclusive, this function wraps the value to be within the range.

longitude

An array of m geocentric longitudes, in degrees, where east
longitude is positive and west longitude is negative. longitude
must be of type single or double. If longitude is not within the
range 0 to 360 inclusive, this function wraps the value to be
within the range.

model

String that specifies the geopotential model.

4-213

geoidheight

Geopotential
Model

Description

'EGM96' EGM96 Geopotential Model to degree and order
360. This model uses a 15-minute grid of point
values in the tide-free system. This function
calculates geoid heights to an accuracy of 0.01
m for this model.

'EGM2008' EGM2008 Geopotential Model to degree and
order 2159. This model uses a 2.5-minute grid
of point values in the tide-free system. This
function calculates geoid heights to an accuracy
of 0.001 m for this model.

'Custom' Custom geopotential model that you define
in datafile. This function calculates geoid
heights to an accuracy of 0.01 m for custom
models.

Note To deploy a custom geopotential model,
explicitly include the custom data and reader
files to the MATLAB® Compiler™ (mcc)
command at compilation. For example:

mcc -m mycustomsgeoidheightfunction...
-a customDataFile -a customReaderFile

For other geopotential models, use the
MATLAB Compiler as usual.

Default: EGM96

datafile

4-214

geoidheight

Optional file that contains definitions for a custom geopotential
model. Provide this file only if you specify 'Custom' for the model
argument. For an example of file content, see aerogmm2b.mat.

This file must contain the following variables.

Variable Description

'latbp' Array of geocentric latitude breakpoints.

'lonbp' Array of geocentric longitude breakpoints.

'grid' Table of geoid height values.

'windowSize' Even integer scalar greater than 2 for the
number of interpolation points.

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning'
'None'

Default: Warning

Output
Arguments

N

An array of M geoid heights in meters. The values in this array
have the same data type as latitude.

Examples Calculate the EGM96 geoid height at 42.4 degrees N latitude and 71.0
degrees W longitude with warning actions:

N = geoidheight(42.4, -71.0)

Calculate the EGM2008 geoid height at two different locations with
error actions.

4-215

geoidheight

N = geoidheight([39.3, 33.4], [77.2, 36.5], 'egm2008', ...
'error')

Calculate a custom geoid height at two different locations with no
actions.

N = geoidheight([39.3, 33.4], [-77.2, 36.5], 'custom', ...
'geoidegm96grid','none')

References Vallado, D. A. “Fundamentals of Astrodynamics and Applications.”
McGraw-Hill, New York, 1997.

NIMA TR8350.2: "Department of Defense World Geodetic System 1984,
Its Definition and Relationship with Local Geodetic Systems."

See Also gravitywgs84 | gravitysphericalharmonic

Related
Links

• National Geospatial-Intelligence Agency Web site:
http://earth-info.nga.mil/GandG/publications/vertdatum.html

4-216

http://earth-info.nga.mil/GandG/publications/vertdatum.html
http://earth-info.nga.mil/GandG/publications/vertdatum.html

Geometry (Aero.Geometry)

Purpose Construct 3-D geometry for use with animation object

Syntax h = Aero.Geometry

Description h = Aero.Geometry defines a 3-D geometry for use with an animation
object.

See Aero.Geometry for further details.

See Also Aero.Geometry

4-217

gravitycentrifugal

Purpose Implement centrifugal effect of planetary gravity

Syntax [gx gy gz] = gravitycentrifugal(planet_coordinates)
[gx gy gz] = gravitycentrifugal(planet_coordinates, model)
[gx gy gz] = gravitycentrifugal(planet_coordinates,
'Custom',

rotational_rate)

Description [gx gy gz] = gravitycentrifugal(planet_coordinates)
implements the mathematical representation of centrifugal effect for
planetary gravity based on planetary rotation rate. This function
calculates arrays of N gravity values in the x-axis, y-axis, and z-axis
of the Planet-Centered Planet-Fixed coordinates for the planet. It
performs these calculations using planet_coordinates, an M-by-3
array of Planet-Centered Planet-Fixed coordinates. You use centrifugal
force in rotating or noninertial coordinate systems. Gravity centrifugal
effect values are greatest at the equator of a planet.

[gx gy gz] = gravitycentrifugal(planet_coordinates, model)
implements the mathematical representation of centrifugal effect based
on planetary gravitational potential for the planetary model, model.

[gx gy gz] = gravitycentrifugal(planet_coordinates,
'Custom', rotational_rate) implements the mathematical
representation of centrifugal effect based on planetary gravitational
potential using the custom rotational rate, rotational_rate.

Input
Arguments

planet_coordinates

M-by-3 array of Planet-Centered Planet-Fixed coordinates in
meters. The z-axis is positive toward the North Pole. If model is
'Earth', the planet coordinates are ECEF coordinates.

model

String that specifies the planetary model. Default is 'Earth'.
Specify one:

• 'Mercury'

4-218

gravitycentrifugal

• 'Venus'

• 'Earth'

• 'Moon'

• 'Mars'

• 'Jupiter'

• 'Saturn'

• 'Uranus'

• 'Neptune'

• 'Custom'

'Custom' requires that you specify your own planetary model
using the rotational_rate parameter.

rotational_rate

Scalar value that specifies the planetary rotational rate in radians
per second. Specify this parameter only if model has the value
'Custom'.

Output
Arguments

gx

Array of M gravity values in the x-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2).

gy

Array of M gravity values in the y-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2).

gz

Array of M gravity values in the z-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2).

Examples Calculate the centrifugal effect of Earth gravity in the x-axis at the
equator on the surface of Earth:

4-219

gravitycentrifugal

gx = gravitycentrifugal([-6378.1363e3 0 0])

Calculate the centrifugal effect of Mars gravity at 15000 m over the
equator and 11000 m over the North Pole:

p = [2412.648e3 -2412.648e3 0; 0 0 3376.2e3]
[gx, gy, gz] = gravitycentrifugal(p, 'Mars')

Calculate the precessing centrifugal effect of gravity for Earth at 15000
m over the equator and 11000 m over the North Pole. This example
uses a custom planetary model at Julian date 2451545:

p = [2412.648e3 -2412.648e3 0; 0 0 3376e3]
% Set julian date to January 1, 2000 at noon GMT
JD = 2451545
% Calculate precession rate in right ascension in meters
pres_RA = 7.086e-12 + 4.3e-15*(JD - 2451545)/36525
% Calculate the rotational rate in a precessing reference
% frame
Omega = 7.2921151467e-5 + pres_RA
[gx, gy, gz] = gravitycentrifugal(p, 'custom', Omega)

See Also gravitywgs84 | gravitysphericalharmonic | gravityzonal

4-220

gravitysphericalharmonic

Purpose Implement spherical harmonic representation of planetary gravity

Syntax [gx gy gz] = gravitysphericalharmonic(planet_coordinates)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,

model)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,

degree)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,

model, degree)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,

model, degree, action)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,

'Custom', degree, {datafile dfreader}, action)

Description [gx gy gz] = gravitysphericalharmonic(planet_coordinates)
implements the mathematical representation of spherical harmonic
planetary gravity based on planetary gravitational potential. This
function calculates arrays of N gravity values in the x-axis, y-axis, and
z-axis of the Planet-Centered Planet-Fixed coordinates for the planet.
It performs these calculations using planet_coordinates, an M-by-3
array of Planet-Centered Planet-Fixed coordinates. By default, this
function assumes 120th degree and order spherical coefficients for the
'EGM2008' (Earth) planetary model.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,
model) implements the mathematical representation of spherical
harmonic planetary gravity based on planetary gravitational potential
for the planetary model, model.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,
degree) uses the degree and order that degree specifies.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,
model, degree) uses the degree and order that degree specifies. model
specifies the planetary model.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,
model, degree, action) uses the specified action when input is out
of range.

4-221

gravitysphericalharmonic

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,
'Custom', degree, {datafile dfreader}, action) implements
the mathematical representation of spherical harmonic planetary
gravity based on planetary gravitational potential for a custom model
planet. datafile defines the planetary model. dfreader specifies the
reader for datafile.

This function has the following limitations:

• The function excludes the centrifugal effects of planetary rotation,
and the effects of a precessing reference frame.

• Spherical harmonic gravity model is valid for radial positions greater
than the planet equatorial radius. Minor errors might occur for
radial positions near or at the planetary surface. The spherical
harmonic gravity model is not valid for radial positions less than
planetary surface.

Input
Arguments

planet_coordinates

M-by-3 array of Planet-Centered Planet-Fixed coordinates in
meters. The z-axis is positive towards the North Pole. If model is
'EGM2008' or 'EGM96' (Earth), the planet coordinates are ECEF
coordinates.

When inputting a large PCPF array and a high degree value, you
might receive an out-of-memory error. For more information about
avoiding out-of-memory errors in the MATLAB environment, see:

http://www.mathworks.com/support/tech-notes/1100/1107.html

When inputting a large PCPF array, you might receive a
maximum matrix size limitation. To determine the largest matrix
or array that you can create in the MATLAB environment for
your platform, see:

http://www.mathworks.com/support/tech-notes/1100/1110.html

model

4-222

http://www.mathworks.com/support/tech-notes/1100/1107.html
http://www.mathworks.com/support/tech-notes/1100/1110.html

gravitysphericalharmonic

String that specifies the planetary model. Default is 'EGM2008'.
Specify one:

Planetary
Model

Planet

'EGM2008' Earth Gravitational Model 2008

'EGM96' Earth Gravitational Model 1996

'LP100K' 100th degree Moon model

'LP165P' 165th degree Moon model

'GMM2B' Goddard Mars model 2B

'Custom' Custom planetary model that you define in
datafile

Note To deploy a custom planetary model,
explicitly include the custom data and reader
files to the MATLAB Compiler (mcc) command at
compilation. For example:

mcc -m mycustomsphericalgravityfunction...
-a customDataFile -a customReaderFile

For other planetary models, use the MATLAB
Compiler as usual.

When inputting a large PCPF array and a high degree value, you
might receive an out-of-memory error. For more information about
avoiding out-of-memory errors in the MATLAB environment, see:

http://www.mathworks.com/support/tech-notes/1100/1107.html

When inputting a large PCPF array, you might receive a
maximum matrix size limitation. To determine the largest matrix

4-223

http://www.mathworks.com/support/tech-notes/1100/1107.html

gravitysphericalharmonic

or array that you can create in the MATLAB environment for
your platform, see:

http://www.mathworks.com/support/tech-notes/1100/1110.html

degree

Scalar value that specifies the degree and order of the harmonic
gravity model.

Planetary
Model

Degree and Order

'EGM2008' Maximum degree and order is 2159.

Default degree and order are 120.

'EGM96' Maximum degree and order is 360.

Default degree and order are 70.

'LP100K' Maximum degree and order is 100.

Default degree and order are 60.

'LP165P' Maximum degree and order is 165.

Default degree and order are 60.

'GMM2B' Maximum degree and order is 80.

Default degree and order are 60.

'Custom' Maximum degree is default degree and order.

When inputting a large PCPF array and a high degree value, you
might receive an out-of-memory error. For more information about
avoiding out-of-memory errors in the MATLAB environment, see:

http://www.mathworks.com/support/tech-notes/1100/1107.html

When inputting a large PCPF array, you might receive a
maximum matrix size limitation. To determine the largest matrix
or array that you can create in the MATLAB environment for
your platform, see:

4-224

http://www.mathworks.com/support/tech-notes/1100/1110.html
http://www.mathworks.com/support/tech-notes/1100/1107.html

gravitysphericalharmonic

http://www.mathworks.com/support/tech-notes/1100/1110.html

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning' (default)
'None'

'Custom'

String that specifies that datafile contains definitions for a
custom planetary model.

datafile

File that contains definitions for a custom planetary model. For
an example of file content, see aerogmm2b.mat.

This file must contain the following variables.

Variable Description

Re Scalar of planet equatorial radius in meters (m)

GM Scalar of planetary gravitational parameter in
meters cubed per second squared (m3/s2)

degree Scalar of maximum degree

C (degree+1)-by-(degree+1) matrix containing
normalized spherical harmonic coefficients matrix,
C

S (degree+1)-by-(degree+1) matrix containing
normalized spherical harmonic coefficients matrix,
S

This parameter requires that you specify a program in the
dfreader parameter to read the data file.

dfreader

4-225

http://www.mathworks.com/support/tech-notes/1100/1110.html

gravitysphericalharmonic

Specify a MATLAB function to read datafile. The reader file
that you specify depends on the file type of datafile.

Data File
Type

Description

MATLAB
file

Specify the MATLAB load function, for example,
@load.

Other file
type

Specify a custom MATLAB reader function.
For examples of custom reader functions, see
astReadSHAFile.m and astReadEGMFile.m. Note
the output variable order in these files.

Output
Arguments

gx

Array of N gravity values in the x-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2)

gy

Array of N gravity values in the y-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2)

gz

Array of N gravity values in the z-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2)

Examples Calculate the gravity in the x-axis at the equator on the surface of
Earth. This example uses the default 120 degree model of EGM2008
with default warning actions:

gx = gravitysphericalharmonic([-6378.1363e3 0 0])

Calculate the gravity at 25000 m over the south pole of Earth. This
example uses the 70 degree model of EGM96 with error actions:

[gx, gy, gz] = gravitysphericalharmonic([0 0 -6381.751e3], 'EGM96', 'Error')

4-226

gravitysphericalharmonic

Calculate the gravity at 15000 m over the equator and 11000 m over
the North Pole. This example uses a 30th order GMM2B Mars model
with warning actions:

p = [2412.648e3 -2412.648e3 0; 0 0 3376.2e3]

[gx, gy, gz] = gravitysphericalharmonic(p, 'GMM2B', 30, 'Warning')

Calculate the gravity at 15000 m over the equator and 11000 m over
the North Pole. This example uses a 60th degree custom planetary
model with no actions:

p = [2412.648e3 -2412.648e3 0; 0 0 3376e3]

[gx, gy, gz] = gravitysphericalharmonic(p, 'custom', 60, ...

{'GMM2BC80_SHA.txt' @astReadSHAFile}, 'None')

See Also gravitywgs84 | gravitycentrifugal | gravityzonal | geoidegm96

4-227

gravitywgs84

Purpose Implement 1984 World Geodetic System (WGS84) representation of
Earth’s gravity

Syntax g = gravitywgs84(h, lat)
g = gravitywgs84(h, lat, lon, method, [noatm, nocent, prec,

jd], action)
gt = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent, prec,

jd], action)
[g gn] = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent,

prec, jd], action)

Description g = gravitywgs84(h, lat) implements the mathematical
representation of the geocentric equipotential ellipsoid of WGS84.
Using h, an array of m altitudes in meters, and lat, an array of m
geodetic latitudes in degrees, calculates g, an array of m gravity values
in the direction normal to the Earth’s surface at a specific location.
The default calculation method is Taylor Series. Gravity precision is
controlled via the method parameter.

g = gravitywgs84(h, lat, lon, method, [noatm, nocent, prec,
jd], action) lets you specify both latitude and longitude, as well as
other optional inputs, when calculating gravity values in the direction
normal to the Earth’s surface. In this format, method can be either
'CloseApprox'or'Exact'.

gt = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent,
prec, jd], action) calculates an array of total gravity values in the
direction normal to the Earth’s surface.

[g gn] = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent,
prec, jd], action) calculates gravity values in the direction both
normal and tangential to the Earth’s surface.

Inputs for gravitywgs84 are:

4-228

gravitywgs84

h An array of m altitudes, in meters

lat An array of m geodetic latitudes, in degrees,
where north latitude is positive, and south
latitude is negative

lon An array of m geodetic longitudes, in
degrees, where east longitude is positive,
and west longitude is negative. This input
is available only with method specified as
'CloseApprox'or'Exact'.

method A string specifying the method to calculate
gravity: 'TaylorSeries', 'CloseApprox', or
'Exact'. The default is 'TaylorSeries'.

noatm A logical value specifying the exclusion of
Earth’s atmosphere. Set to true for the Earth’s
gravitational field to exclude the mass of
the atmosphere. Set to false for the value
for the Earth’s gravitational field to include
the mass of the atmosphere. This option
is available only with method specified as
'CloseApprox'or'Exact'. The default is
false.

nocent A logical value specifying the removal of
centrifugal effects. Set to true to calculate
gravity based on pure attraction resulting from
the normal gravitational potential. Set to false
to calculate gravity including the centrifugal
force resulting from the Earth’s angular
velocity. This option is available only with
method specified as 'CloseApprox'or'Exact'.
The default is false.

4-229

gravitywgs84

prec A logical value specifying the presence of a
precessing reference frame. Set to true for the
angular velocity of the Earth to be calculated
using the International Astronomical Union
(IAU) value of the Earth’s angular velocity
and the precession rate in right ascension. To
obtain the precession rate in right ascension,
Julian Centuries from Epoch J2000.0 is
calculated using the Julian date, jd. If set to
false, the angular velocity of the Earth used
is the value of the standard Earth rotating
at a constant angular velocity. This option
is available only with method specified as
'CloseApprox'or'Exact'. The default is
false.

jd A scalar value specifying Julian date used to
calculate Julian Centuries from Epoch J2000.0.
This input is available only with method
specified as 'CloseApprox'or'Exact'.

action A string to determine action for out-of-range
input. Specify if out-of-range input invokes a
'Warning', 'Error', or no action ('None'). The
default is 'Warning'.

Outputs calculated for the Earth’s gravity include:

4-230

gravitywgs84

g An array of m gravity values in the direction
normal to the Earth’s surface at a specific
lat lon location. A positive value indicates a
downward direction.

gt An array of m total gravity values in the
direction normal to the Earth’s surface at a
specific lat lon location. A positive value
indicates a downward direction. This option is
available only with method specified as'Exact'.

gn An array of m gravity values in the direction
tangential to the Earth’s surface at a specific
lat lon location. A positive value indicates a
northward direction. This option is available
only with method specified as'Exact'.

Examples Calculate the normal gravity at 5000 meters and 55 degrees latitude
using the Taylor Series approximation method with errors for
out-of-range inputs:

g = gravitywgs84(5000, 55, 'TaylorSeries', 'Error')

g =

9.7997

Calculate the normal gravity at 15,000 meters, 45 degrees latitude,
and 120 degrees longitude using the Close Approximation method with
atmosphere, centrifugal effects, and no precessing, with warnings for
out-of-range inputs:

g = gravitywgs84(15000, 45, 120, 'CloseApprox')

g =

4-231

gravitywgs84

9.7601

Calculate the normal and tangential gravity at 1000 meters, 0 degrees
latitude, and 20 degrees longitude using the Exact method with
atmosphere, centrifugal effects, and no precessing, with warnings for
out-of-range inputs:

[g, gt] = gravitywgs84(1000, 0, 20, 'Exact')

g =

9.7772

gt =

0

Calculate the normal and tangential gravity at 1000 meters, 0 degrees
latitude, and 20 degrees longitude and 11,000 meters, 30 degrees
latitude, and 50 degrees longitude using the Exact method with
atmosphere, centrifugal effects, and no precessing, with no actions for
out-of-range inputs:

h = [1000; 11000];
lat = [0; 30];
lon = [20; 50];
[g, gt] = gravitywgs84(h, lat, lon, 'Exact', 'None')

g =

9.7772
9.7594

4-232

gravitywgs84

gt =

1.0e-004 *

0
-0.7751

Calculate the normal gravity at 15,000 meters, 45 degrees latitude,
and 120 degrees longitude and 5000 meters, 55 degrees latitude, and
100 degrees longitude using the Close Approximation method with
atmosphere, no centrifugal effects, and no precessing, with warnings for
out-of-range inputs:

h = [15000 5000];

lat = [45 55];

lon = [120 100];

g = gravitywgs84(h, lat, lon, 'CloseApprox', [false true false 0])

g =

9.7771 9.8109

Calculate the normal and tangential gravity at 1000 meters, 0 degrees
latitude, and 20 degrees longitude using the Exact method with
atmosphere, centrifugal effects, and precessing at Julian date 2451545,
with warnings for out-of-range inputs:

[g, gt] = gravitywgs84(1000, 0, 20, 'Exact', ...
[false false true 2451545], 'Warning')

g =

9.7772

4-233

gravitywgs84

gt =

0

Calculate the normal gravity at 15,000 meters, 45 degrees latitude, and
120 degrees longitude using the Close Approximation method with no
atmosphere, with centrifugal effects, and with precessing at Julian date
2451545, with errors for out-of-range inputs:

g = gravitywgs84(15000, 45, 120, 'CloseApprox', ...
[true false true 2451545], 'Error')

g =

9.7601

Calculate the total normal gravity at 15,000 meters, 45 degrees latitude,
and 120 degrees longitude using the Exact method with no atmosphere,
with centrifugal effects, and with precessing at Julian date 2451545,
with errors for out-of-range inputs:

g = gravitywgs84(15000, 45, 120, 'Exact', ...
[true false true 2451545], 'Error')

g =

9.7601

Assumptions
and
Limitations

The WGS84 gravity calculations are based on the assumption of a
geocentric equipotential ellipsoid of revolution. Since the gravity
potential is assumed to be the same everywhere on the ellipsoid, there
must be a specific theoretical gravity potential that can be uniquely
determined from the four independent constants defining the ellipsoid.

4-234

gravitywgs84

Use of the WGS84 Taylor Series model should be limited to low geodetic
heights. It is sufficient near the surface when submicrogal precision is
not necessary. At medium and high geodetic heights, it is less accurate.

Use of the WGS84 Close Approximation model should be limited to a
geodetic height of 20,000.0 meters (approximately 65,620.0 feet). Below
this height, it gives results with submicrogal precision.

To predict and determine a satellite orbit with high accuracy, use the
EGM96 through degree and order 70.

References NIMA TR8350.2: “Department of Defense World Geodetic System 1984,
Its Definition and Relationship with Local Geodetic Systems.”

4-235

gravityzonal

Purpose Implement zonal harmonic representation of planetary gravity

Syntax [gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord)

[gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord,
degreeGravityModel)

[gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord, planetModel)

[gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord, planetModel,
degreeGravityModel)

[gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord, planetModel,
degreeGravityModel, action)

[gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord, 'Custom',
equatorialRadius, planetaryGravitional, zonalHarmonicCoeff,
action)

Description [gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord) implements the mathematical
representation of zonal harmonic planetary gravity based on planetary
gravitational potential. For input, it takes an m-by-3 matrix that
contains planet-centered planet-fixed coordinates from the center of the
planet in meters. This function calculates the arrays of m gravity values
in the x-, y-, and z-axes of the planet-centered planet-fixed coordinates.
It uses the fourth order zonal coefficients for Earth by default.

[gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord, degreeGravityModel) uses the degree
of harmonic model.

[gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord, planetModel) uses the planetary model.

4-236

gravityzonal

[gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord, planetModel, degreeGravityModel)
uses the degree of harmonic model and planetary model.

[gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord, planetModel, degreeGravityModel,
action) specifies the action for out-of-range input.

[gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord, 'Custom', equatorialRadius,
planetaryGravitional, zonalHarmonicCoeff, action) uses the
equatorial radius, planetary gravitational parameter, and zonal
harmonic coefficients for the custom planetary model.

This function does not include the potential due planet rotation, which
excludes the centrifugal effects of planetary rotation and the effects
of a precessing reference frame.

Input
Arguments

planetCoord

m-by-3 matrix that contains planet-centered planet-fixed
coordinates from the center of the planet in meters. If
planetModel has a value of 'Earth', this matrix contains
Earth-centered Earth-fixed (ECEF) coordinates.

planetModel

String that specifies the planetary model. Enter one:

• 'Mercury'

• 'Venus'

• 'Earth'

• 'Moon'

• 'Mars'

• 'Jupiter'

• 'Saturn'

4-237

gravityzonal

• 'Uranus'

• 'Neptune'

• 'Custom'

'Custom' requires you to specify your own planetary model
using the equatorialRadius, planetaryGravitional, and
zonalHarmonicCoeff parameters.

Default: 'Earth'

degreeGravityModel

Degree of harmonic model.

• 2 — Second degree, J2. Most significant or largest spherical
harmonic term, which accounts for the oblateness of a planet.
2 is default if planetModel is 'Mercury', 'Venus', 'Moon',
'Uranus', or 'Neptune'.

• 3— Third degree, J3. 3 is default if planetModel is 'Mars'.

• 4— Fourth degree, J4 (default). Default is 4 if planetModel is
'Earth, 'Jupiter', 'Saturn' or 'Custom'.

Default:

equatorialRadius

Planetary equatorial radius in meters. Use this parameter only
if you specify planetModel as 'Custom'.

planetaryGravitional

Planetary gravitational parameter in meters cubed per second
squared. Use this parameter only if you specify planetModel as
'Custom'.

zonalHarmonicCoeff

4-238

gravityzonal

3-element array defining the zonal harmonic coefficients that the
function uses to calculate zonal harmonics planetary gravity. Use
this parameter only if you specify planetModel as 'Custom'.

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning'
'None' (default)

Output
Arguments

gravityXcoord

Array of m gravity values in the x-axis of the planet-centered
planet-fixed coordinates in meters per second squared.

gravityYcoord

Array of m gravity values in the y-axis of the planet-centered
planet-fixed coordinates in meters per second squared.

gravityZcoord

Array of m gravity values in the z-axis of the planet-centered
planet-fixed coordinates in meters per second squared.

Examples Calculate the gravity in the x-axis at the equator on the surface of Earth
using the fourth degree model with no warning actions:

gx = gravityzonal([-6378.1363e3 0 0])

gx =

9.8142

Calculate the gravity using the close approximation method at 100 m
over the geographic South Pole of Earth with error actions:

[gx, gy, gz] = gravityzonal([0 0 -6356.851e3], 'Error')

4-239

gravityzonal

gx =

0

gy =

0

gz =

9.8317

Calculate the gravity at 15000 m over the equator and 11000 m over the
geographic North Pole using a second order Mars model with warning
actions:

p = [2412.648e3 -2412.648e3 0; 0 0 3376.2e3]
[gx, gy, gz] = gravityzonal(p, 'Mars', 2, 'Warning')
p =

2412648 -2412648 0
0 0 3376200

gx =

-2.6224
0

gy =

2.6224
0

gz =

4-240

gravityzonal

0
-3.7542

Calculate the gravity at 15000 m over the equator and 11000 m over the
geographic North Pole using a custom planetary model with no actions:

p= [2412.648e3 -2412.648e3 0; 0 0 3376e3]
GM = 42828.371901e9 % m^3/s^2
Re = 3397e3 % m
Jvalues = [1.95545367944545e-3 3.14498094262035e-5 ...
-1.53773961526397e-5]
[gx, gy, gz] = gravityzonal(p, 'custom', Re, GM, ...
Jvalues, 'None')

Algorithm gravityzonal is implemented using the following planetary parameter
values for each planet:

Planet Equatorial
Radius (Re) in
Meters

Gravitational
Parameter (GM) in
m3/s2

Zonal Harmonic Coefficients
(J Values)

Earth 6378.1363e3 3.986004415e14 [0.0010826269 -0.0000025323
-0.0000016204]

Jupiter 71492.e3 1.268e17 [0.01475 0 -0.00058]

Mars 3397.2e3 4.305e13 [0.001964 0.000036]

Mercury 2439.0e3 2.2032e13 0.00006

Moon 1738.0e3 4902.799e9 0.0002027

Neptune 24764e3 6.809e15 0.004

Saturn 60268.e3 3.794e16 [0.01645 0 -0.001]

Uranus 25559.e3 5.794e15 0.012

Venus 6052.0e3 3.257e14 0.000027

4-241

gravityzonal

References Vallado, D. A., Fundamentals of Astrodynamics and Applications,
McGraw-Hill, New York, 1997.

Fortescue, P., J. Stark, G. Swinerd, (Eds.). Spacecraft Systems
Engineering, Third Edition, Wiley & Sons, West Sussex, 2003.

Tewari, A., Atmospheric and Space Flight Dynamics Modeling and
Simulation with MATLAB and Simulink, Birkhäuser, Boston, 2007.

Alternatives Zonal Harmonic Gravity Model block

See Also gravitywgs84 | geoidegm96

4-242

Aero.Animation.hide

Purpose Hide animation figure

Syntax hide(h)
h.hide

Description hide(h) and h.hide hide (close) the figure for the animation object h.
Use Aero.Animation.show to redisplay the animation object figure.

Input
Arguments

h Animation object.

Examples Hide the animation object figure that the Aero.Animation.show
method displays.

h=Aero.Animation;
h.show;
h.hide;

4-243

Aero.Animation.initialize

Purpose Create animation object figure and axes and build patches for bodies

Syntax initialize(h)
h.initialize

Description initialize(h) and h.initialize create a figure and axes for the
animation object h, and builds patches for the bodies associated with
the animation object. If there is an existing figure, this function

1 Clears out the old figure and its patches.

2 Creates a new figure and axes with default values.

3 Repopulates the axes with new patches using the surface to patch
data from each body.

Input
Arguments

h Animation object.

Examples Initialize the animation object, h.

h = Aero.Animation;
h.initialize();

4-244

initialize (Aero.FlightGearAnimation)

Purpose Set up FlightGear animation object

Syntax initialize(h)
h.initialize

Description initialize(h) and h.initialize set up the FlightGear version, IP
address, and socket for the FlightGear animation object h.

Examples Initialize the animation object, h.

h = Aero.FlightGearAnimation;
h.initialize();

See Also delete, play, GenerateRunScript, update

4-245

initialize (Aero.VirtualRealityAnimation)

Purpose Create and populate virtual reality animation object

Syntax initialize(h)
h.initialize

Description initialize(h) and h.initialize create a virtual reality animation
world and populate the virtual reality animation object h. If a previously
initialized virtual reality animation object existgs, and that object has
user-specified data, this function saves the previous object to be reset
after the initialization.

Examples Initialize the virtual reality animation object, h.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

See Also delete, play

4-246

Aero.Animation.initIfNeeded

Purpose Initialize animation graphics if needed

Syntax initIfNeeded(h)
h.initIfNeeded

Description initIfNeeded(h) and h.initIfNeeded initialize animation object
graphics if necessary.

Input
Arguments

h Animation object.

Examples Initialize the animation object graphics of h as needed.

h=Aero.Animation;
h.initIfNeeded;

4-247

juliandate

Purpose Calculate Julian date

Syntax jd = juliandate(v)
jd = juliandate(s,f)
jd = juliandate(y,mo,d)
jd = juliandate([y,mo,d])
jd = juliandate(y,mo,d,h,mi,s)
jd = juliandate([y,mo,d,h,mi,s])

Description jd = juliandate(v) converts one or more date vectors, v, into Julian
date, jd. Input v can be an m-by-6 or m-by-3 matrix containing m full or
partial date vectors, respectively. juliandate returns a column vector
of m Julian dates, which are the number of days and fractions since
noon Universal Time on January 1, 4713 BCE.

A date vector contains six elements, specifying year, month, day,
hour, minute, and second. A partial date vector has three elements,
specifying year, month, and day. Each element of v must be a positive
double-precision number.

jd = juliandate(s,f) converts one or more date strings, s, into
Julian date, jd, using format string f. s can be a character array where
each row corresponds to one date string, or a one-dimensional cell array
of strings. juliandate returns a column vector of m Julian dates, where
m is the number of strings in s.

All of the date strings in s must have the same format f, which must
be composed of date format symbols listed in the datestr function
reference page. Formats containing the letter Q are not accepted by
juliandate.

Certain formats may not contain enough information to compute a date
number. In those cases, hours, minutes, and seconds default to 0, days
default to 1, months default to January, and years default to the current
year. Date strings with two-character years are interpreted to be within
the 100 years centered around the current year.

jd = juliandate(y,mo,d) and jd = juliandate([y,mo,d])
return the decimal year for corresponding elements of the y,mo,d

4-248

juliandate

(year,month,day) arrays. y, mo, and d must be arrays of the same size
(or any of them can be a scalar).

jd = juliandate(y,mo,d,h,mi,s) and jd =
juliandate([y,mo,d,h,mi,s]) return the Julian
dates for corresponding elements of the y,mo,d,h,mi,s
(year,month,day,hour,minute,second) arrays. The six arguments must
be arrays of the same size (or any of them can be a scalar).

Examples Calculate Julian date for May 24, 2005:

jd = juliandate('24-May-2005','dd-mmm-yyyy')

jd =

2.4535e+006

Calculate Julian date for December 19, 2006:

jd = juliandate(2006,12,19)

jd =

2.4541e+006

Calculate Julian date for October 10, 2004, at 12:21:00 p.m.:

jd = juliandate(2004,10,10,12,21,0)

jd =

2.4533e+006

Assumptions
and
Limitations

This function is valid for all common era (CE) dates in the Gregorian
calendar.

The calculation of Julian date does not take into account leap seconds.

See Also decyear, leapyear, mjuliandate

4-249

leapyear

Purpose Determine leap year

Syntax ly = leapyear(year)

Description ly = leapyear(year) determines whether one or more years are leap
years or not. The output, ly, is a logical array. year should be numeric.

Examples Determine whether 2005 is a leap year:

ly = leapyear(2005)

ly =

0

Determine whether 2000, 2005, and 2020 are leap years:

ly = leapyear([2000 2005 2020])

ly =

1 0 1

Assumptions
and
Limitations

The determination of leap years is done by Gregorian calendar rules.

See Also decyear, juliandate, mjuliandate

4-250

lla2ecef

Purpose Convert geodetic coordinates to Earth-centered Earth-fixed (ECEF)
coordinates

Syntax p = lla2ecef(lla)
p = lla2ecef(lla, model)
p = lla2ecef(lla, f, Re)

Description p = lla2ecef(lla) converts an m-by-3 array of geodetic coordinates
(latitude, longitude and altitude), lla, to an m-by-3 array of ECEF
coordinates, p. lla is in [degrees degrees meters]. p is in meters. The
default ellipsoid planet is WGS84.

p = lla2ecef(lla, model) is an alternate method for converting the
coordinates for a specific ellipsoid planet. Currently only 'WGS84' is
supported for model.

p = lla2ecef(lla, f, Re) is another alternate method for converting
the coordinates for a custom ellipsoid planet defined by flattening, f,
and the equatorial radius, Re, in meters.

Examples Determine ECEF coordinates at a latitude, longitude, and altitude:

p = lla2ecef([0 45 1000])

p =

1.0e+006 *

4.5107 4.5107 0

Determine ECEF coordinates at multiple latitudes, longitudes, and
altitudes, specifying WGS84 ellipsoid model:

p = lla2ecef([0 45 1000; 45 90 2000], 'WGS84')

p =

4-251

lla2ecef

1.0e+006 *

4.5107 4.5107 0
0.0000 4.5190 4.4888

Determine ECEF coordinates at multiple latitudes, longitudes, and
altitudes, specifying custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
p = lla2ecef([0 45 1000; 45 90 2000], f, Re)

p =

1.0e+006 *

2.4027 2.4027 0
0.0000 2.4096 2.3852

See Also ecef2lla, geoc2geod, geod2geoc

4-252

load (Aero.Body)

Purpose Get geometry data from source

Syntax load(h, bodyDataSrc)
h.load(bodyDataSrc)
load(h, bodyDataSrc, geometrysource)
h.load(bodyDataSrc, geometrysource)

Description load(h, bodyDataSrc) and h.load(bodyDataSrc) load the graphics
data from the body graphics file. This command assumes a default
geometry source type set to Auto.

load(h, bodyDataSrc, geometrysource) and h.load(bodyDataSrc,
geometrysource) load the graphics data from the body graphics file,
bodyDataSrc, into the face, vertex, and color data of the animation
body object h. Then, when axes ax is available, you can use this data
to generate patches with generatePatches. geometrysource is the
geometry source type for the body.

By default geometrysource is set to Auto, which recognizes .mat
extensions as MAT-files, .ac extensions as Ac3d files, and structures
containing fields of name, faces, vertices, and cdata as MATLAB
variables. If you want to use alternate file extensions or file types, enter
one of the following:

• Auto

• Variable

• MatFile

• Ac3d

• Custom

Examples Load the graphic data from the graphic data file, pa24-250_orange.ac,
into b.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d');

4-253

load (Aero.Body)

See Also generatePatches, move, update

4-254

machnumber

Purpose Compute Mach number using velocity and speed of sound

Syntax mach = machnumber(v, a)

Description mach = machnumber(v, a) computes m Mach numbers, mach, from an
m-by-3 array of velocities, v, and an array of m speeds of sound, a. v and
a must have the same length units.

Examples Determine the Mach number for velocity and speed of sound in feet
per second:

mach = machnumber([84.3905 33.7562 10.1269], 1116.4505)

mach =

0.0819

Determine the Mach number for velocity and speed of sound in meters
per second:

mach = machnumber([25.7222 10.2889 3.0867], [340.2941 295.0696])

mach =

0.0819 0.0945

Determine the Mach number for velocity and speed of sound in knots:

mach = machnumber([50 20 6; 5 0.5 2], [661.4789 573.5694])

mach =

0.0819
0.0094

4-255

machnumber

See Also airspeed, alphabeta, dpressure

4-256

mjuliandate

Purpose Calculate modified Julian date

Syntax mjd = mjuliandate(v)
mjd = mjuliandate(s,f)
mjd = mjuliandate(y,mo,d)
mjd = mjuliandate([y,mo,d])
mjd = mjuliandate(y,mo,d,h,mi,s)
mjd = mjuliandate([y,mo,d,h,mi,s])

Description mjd = mjuliandate(v) converts one or more date vectors, v, into
modified Julian date, mjd. Input v can be an m-by-6 or m-by-3 matrix
containing m full or partial date vectors, respectively. mjuliandate
returns a column vector of m modified Julian dates. Modified Julian
dates begin at midnight rather than noon and have the first two digits
of the corresponding Julian date removed.

A date vector contains six elements, specifying year, month, day,
hour, minute, and second. A partial date vector has three elements,
specifying year, month, and day. Each element of v must be a positive
double-precision number.

mjd = mjuliandate(s,f) converts one or more date strings, s,
into modified Julian date, mjd, using format string f. s can be a
character array where each row corresponds to one date string, or a
one-dimensional cell array of strings. mjuliandate returns a column
vector of m modified Julian dates, where m is the number of strings in s.

All of the date strings in s must have the same format f, which must
be composed of date format symbols listed in the datestr function
reference page. Formats containing the letter Q are not accepted by
mjuliandate.

Certain formats may not contain enough information to compute a date
number. In those cases, hours, minutes, and seconds default to 0, days
default to 1, months default to January, and years default to the current
year. Date strings with two-character years are interpreted to be within
the 100 years centered around the current year.

4-257

mjuliandate

mjd = mjuliandate(y,mo,d) and mjd = mjuliandate([y,mo,d])
return the decimal year for corresponding elements of the y,mo,d
(year,month,day) arrays. y, mo, and d must be arrays of the same size
(or any of them can be a scalar).

mjd = mjuliandate(y,mo,d,h,mi,s) and mjd =
mjuliandate([y,mo,d,h,mi,s]) return the modified Julian
dates for corresponding elements of the y,mo,d,h,mi,s
(year,month,day,hour,minute,second) arrays. The six arguments must
be arrays of the same size (or any of them can be a scalar).

Examples Calculate the modified Julian date for May 24, 2005:

mjd = mjuliandate('24-May-2005','dd-mmm-yyyy')

mjd =

53514

Calculate the modified Julian date for December 19, 2006:

mjd = mjuliandate(2006,12,19)

mjd =

54088

Calculate the modified Julian date for October 10, 2004, at 12:21:00
p.m.:

mjd = mjuliandate(2004,10,10,12,21,0)

mjd =

5.3289e+004

4-258

mjuliandate

Assumptions
and
Limitations

This function is valid for all common era (CE) dates in the Gregorian
calendar.

The calculation of modified Julian date does not take into account leap
seconds.

See Also decyear, juliandate, leapyear

4-259

move (Aero.Body)

Purpose Change animation body position and orientation

Syntax move(h, translation, rotation)
h.move(translation,rotation)

Description move(h, translation, rotation) and
h.move(translation,rotation) set a new position and orientation for
the body object h. translation is a 1-by-3 matrix in the aerospace
body x-y-z coordinate system. rotation is a 1-by-3 matrix, in
radians, that specifies the rotations about the right-hand x-y-z
sequence of coordinate axes. The order of application of the rotation is
z-y-x (r-q-p).

Examples Change animation body position to newpos and newrot.

h = Aero.Body;
h.load('ac3d_xyzisrgb.ac','Ac3d');
newpos = h.Position + 1.00;
newrot = h.Rotation + 0.01;
h.move(newpos,newrot);

See Also load

4-260

move (Aero.Node)

Purpose Change node translation and rotation

Syntax move(h,translation,rotation)
h.move(translation,rotation)

Description move(h,translation,rotation) and h.move(translation,rotation)
set a new position and orientation for the node object h. translation
is a 1-by-3 matrix in the aerospace body x-y-z coordinate system
or another coordinate system. In the latter case, you can use the
CoordTransformFcn function to move it into an aerospace body.
rotation is a 1-by-3 matrix, in radians, that specifies the rotations
about the right-hand x-y-z sequence of coordinate axes. The order of
application of the rotation is z-y-x (r-q-p). This function uses the
CoordTransformFcn to apply the translation and rotation from the
input coordinate system to the aerospace body. The function then moves
the translation and rotation from the aerospace body to the VRML
x-y-z coordinates.

Examples Move the Lynx body. This example uses the Simulink 3D Animation
vrnode/getfield function to retrieve the translation and rotation.
These coordinates are those used in the Simulink 3D Animation
software.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

newtrans = getfield(h.Nodes{4}.VRNode,'translation') + 1.0;

newrot = getfield(h.Nodes{4}.VRNode,'rotation') + [.2 0.01 0.01 0.01];

h.Nodes{4}.move(newtrans,newrot);

Limitations This function cannot get the node position in aerospace body
coordinates; it needs to use the CoordTransformFcn to do so.

This function cannot set a viewpoint position or orientation (see
addViewpoint).

4-261

move (Aero.Node)

See Also addNode

4-262

Aero.Animation.moveBody

Purpose Move body in animation object

Syntax moveBody(h,idx,translation,rotation)
h.moveBody(idx,translation,rotation)

Description moveBody(h,idx,translation,rotation) and
h.moveBody(idx,translation,rotation) set a new position and
attitude for the body specified with the index idx in the animation object
h. translation is a 1-by-3 matrix in the aerospace body coordinate
system. rotation is a 1-by-3 matrix, in radians, that specifies the
rotations about the right-hand x-y-z sequence of coordinate axes. The
order of application of the rotation is z-y-x (R-Q-P).

Input
Arguments

h Animation object.

translation 1-by-3 matrix in the aerospace body coordinate
system.

rotation 1-by-3 matrix, in radians, that specifies the
rotations about the right-hand x-y-z sequence
of coordinate axes.

idx Body specified with this index.

Examples Move the body with the index 1 to position offset from the original by
+ [0 0 -3] and rotation, rot1.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
pos1 = h.Bodies{1}.Position;
rot1 = h.Bodies{1}.Rotation;
h.moveBody(1,pos1 + [0 0 -3],rot1);

4-263

Node (Aero.Node)

Purpose Create node object for use with virtual reality animation

Syntax h = Aero.Node

Description h = Aero.Node creates a node object for use with virtual reality
animation.

See Aero.Node for further details.

See Also Aero.Node

4-264

nodeInfo (Aero.VirtualRealityAnimation)

Purpose Create list of nodes associated with virtual reality animation object

Syntax nodeInfo(h)
h.nodeInfo
n = nodeInfo(h)
n = h.nodeInfo

Description nodeInfo(h) and h.nodeInfo create a list of nodes associated with the
virtual reality animation object, h.

n = nodeInfo(h) and n = h.nodeInfo create a cell array (n) that
contains the node information. The function stores the information
in a cell array as follows:

N{1,n} = Node Index
N{2,n} = Node Name
N{3,n} = Node Type

where n is the number of nodes. You might want to use this function
to find an existing node by name and then perform a certain action
on it using the node index.

Examples
Create list of nodes associated with virtual reality animation object, h.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

h.initialize();

h.nodeInfo;

See Also addNode

4-265

Aero.Animation.play

Purpose Animate Aero.Animation object given position/angle time series

Syntax play(h)
play.h

Description play(h) and play.h animate the loaded geometry in h for the
current TimeseriesDataSource at the specified rate given by the
'TimeScaling' property (in seconds of animation data per second of
wall-clock time) and animated at a certain number of frames per second
using the 'FramesPerSecond' property.

The time series data is interpreted according to the
'TimeseriesSourceType' property, which can be one
of:

'Timeseries' MATLAB time series data with six
values per time:

x y z phi theta psi

The values are resampled.

'Simulink.Timeseries' Simulink.Timeseries (Simulink signal
logging):

• First data item

x y z

• Second data item

phi theta psi

4-266

Aero.Animation.play

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: x y z

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data:
time x y z phi theta psi. If a
double-precision array of 8 or more
columns is in 'TimeseriesSource',
the first 7 columns are used as 6-DoF
data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
x z theta. If a double-precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

The following are limitations for the TStart and TFinal values:

• TStart and TFinal must be numeric.

• TStart and TFinal cannot be Inf or NaN.

• TFinal must be greater than or equal to TStart.

4-267

Aero.Animation.play

• TFinal cannot be greater than the maximum Timeseries time.

• TStart cannot be less than the minimum Timeseries time.

The time advancement algorithm used by play is based on animation
frames counted by ticks:

ticks = ticks + 1;
time = tstart + ticks*FramesPerSecond*TimeScaling;

where

TimeScaling Specify the seconds of animation data
per second of wall-clock time.

FramesPerSecond Specify the number of frames
per second used to animate the
'TimeseriesSource'.

For default 'TimeseriesReadFcn' methods, the last frame played is
the last time value.

Time is in seconds, position values are in the same units as the geometry
data loaded into the animation object, and all angles are in radians.

Note If there is a 15% difference between the expected time advance
and the actual time advance, this method will generate the following
warning:

TimerPeriod has been set to <value>. You may wish to modify the animation

TimeScaling and FramesPerSecond properties to compensate for the

millisecond limit of the TimerPeriod. See documentation for details.

Input
Arguments

h Animation object.

4-268

Aero.Animation.play

Examples Animate the body, idx1, for the duration of the time series data.

h = Aero.Animation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
load simdata;
h.Bodies{1}.TimeSeriesSource = simdata;
h.show();
h.play();

4-269

play (Aero.FlightGearAnimation)

Purpose Animate FlightGear flight simulator using given position/angle time
series

Syntax play(h)
h.play

Description play(h) and h.play animate FlightGear flight simulator using
specified time series data in h. The time series data can be set in h by
using the property 'TimeseriesSource'.

The time series data, stored in the property 'TimeseriesSource', is
interpreted according to the 'TimeseriesSourceType' property, which
can be one of:

'Timeseries' MATLAB time series data with six
values per time:

latitude longitude altitude phi
theta psi

The values are resampled.

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: latitude
longitude altitude

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

4-270

play (Aero.FlightGearAnimation)

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data: time
latitude longitude altitude phi
theta psi. If a double-precision
array of 8 or more columns is in
'TimeseriesSource', the first 7
columns are used as 6-DoF data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
latitude altitude theta. If a
double-precision array of 5 or more
columns is in 'TimeseriesSource',
the first 4 columns are used as 3-DoF
data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

The time advancement algorithm used by play is based on animation
frames counted by ticks:

ticks = ticks + 1;
time = tstart + ticks*FramesPerSecond*TimeScaling;

where

TimeScaling Specify the seconds of animation data
per second of wall-clock time.

FramesPerSecond Specify the number of frames
per second used to animate the
'TimeseriesSource'.

For default 'TimeseriesReadFcn' methods, the last frame played is
the last time value.

4-271

play (Aero.FlightGearAnimation)

Time is in seconds, position values are in the same units as
the geometry model to be used by FlightGear (see the property
'GeometryModelName'), and all angles are in radians. A possible result
of using incorrect units is the early termination of the FlightGear flight
simulator.

Note If there is a 15% difference between the expected time advance
and the actual time advance, this method will generate the following
warning:

TimerPeriod has been set to <value>. You may wish to modify the animation

TimeScaling and FramesPerSecond properties to compensate for the

millisecond limit of the TimerPeriod. See documentation for details.

The play method supports FlightGear animation objects with custom
timers.

Limitations The following are limitations for the TStart and TFinal values:

• TStart and TFinal must be numeric.

• TStart and TFinal cannot be Inf or NaN.

• TFinal must be greater than or equal to TStart.

• TFinal cannot be greater than the maximum Timeseries time.

• TStart cannot be less than the minimum Timeseries time.

Examples Animate FlightGear flight simulator using the given 'Array3DoF'
position/angle time series data:

data = [86.2667 -2.13757034184404 7050.896596 -0.135186746141248;...

87.2833 -2.13753906554384 6872.545051 -0.117321084678936;...

88.2583 -2.13751089592972 6719.405713 -0.145815609299676;...

89.275 -2.13747984652232 6550.117118 -0.150635248762596;...

4-272

play (Aero.FlightGearAnimation)

90.2667 -2.13744993157894 6385.05883 -0.143124782831999;...

91.275 -2.13742019116849 6220.358163 -0.147946202530756;...

92.275 -2.13739055547779 6056.906647 -0.167529704309343;...

93.2667 -2.13736104196014 5892.356118 -0.152547361677911;...

94.2583 -2.13733161570895 5728.201718 -0.161979312941906;...

95.2583 -2.13730231163081 5562.923808 -0.122276929636682;...

96.2583 -2.13727405475022 5406.736322 -0.160421658944379;...

97.2667 -2.1372440001805 5239.138477 -0.150591353731908;...

98.2583 -2.13721598764601 5082.78798 -0.147737722951605];

h = fganimation

h.TimeseriesSource = data

h.TimeseriesSourceType = 'Array3DoF'

play(h)

Animate FlightGear flight simulator using the custom timer,
MyFGTimer.

h.SetTimer('MyFGTimer')
h.play('MyFGTimer')

See Also GenerateRunScript, initialize, update

4-273

play (Aero.VirtualRealityAnimation)

Purpose Animate virtual reality world for given position and angle in time series
data

Syntax play(h)
h.play

Description play(h) and h.play animate the virtual reality world in h for the
current TimeseriesDataSource at the specified rate given by the
'TimeScaling' property (in seconds of animation data per second of
wall-clock time) and animated at a certain number of frames per second
using the 'FramesPerSecond' property.

The time series data is interpreted according to the
'TimeseriesSourceType' property, which can be one
of:

'timeseries' MATLAB time series data with six
values per time:

x y z phi theta psi

The values are resampled.

'Simulink.Timeseries' Simulink.Timeseries (Simulink signal
logging):

• First data item

x y z

• Second data item

phi theta psi

4-274

play (Aero.VirtualRealityAnimation)

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: x y z

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data:
time x y z phi theta psi. If a
double-precision array of 8 or more
columns is in 'TimeseriesSource',
the first 7 columns are used as 6-DoF
data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
x z theta. If a double-precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

The time advancement algorithm used by play is based on animation
frames counted by ticks:

ticks = ticks + 1;
time = tstart + ticks*FramesPerSecond*TimeScaling;

where

4-275

play (Aero.VirtualRealityAnimation)

TimeScaling Specify the seconds of animation data
per second of wall-clock time.

FramesPerSecond Specify the number of frames
per second used to animate the
'TimeseriesSource'.

For default 'TimeseriesReadFcn' methods, the last frame played is
the last time value.

Time is in seconds, position values are in the same units as the geometry
data loaded into the animation object, and all angles are in radians.

Examples Animate virtual reality world, asttkoff.

h = Aero.VirtualRealityAnimation;

h.FramesPerSecond = 10;

h.TimeScaling = 5;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

h.initialize();

load takeoffData

h.Nodes{7}.TimeseriesSource = takeoffData;

h.Nodes{7}.TimeseriesSourceType = 'StructureWithTime';

h.Nodes{7}.CoordTransformFcn = @vranimCustomTransform;

h.play();

See Also initialize

4-276

quat2angle

Purpose Convert quaternion to rotation angles

Syntax [r1 r2 r3] = quat2angle(q)
[r1 r2 r3] = quat2angle(q, s)

Description [r1 r2 r3] = quat2angle(q) calculates the set of rotation angles,
r1, r2, r3, for a given quaternion, q. q is an m-by-4 matrix containing
m quaternions. Each element of q must be a real number. q has its
scalar number as the first column.

Rotation angles are output in radians.

r1
Returns an m array of first rotation angles.

r2
Returns an m array of second rotation angles.

r3
Returns an m array of third rotation angles.

[r1 r2 r3] = quat2angle(q, s) calculates the set of rotation angles,
r1, r2, r3, for a given quaternion, q, and a specified rotation sequence, s.

The default rotation sequence is 'ZYX', where r1 is z-axis rotation, r2
is y-axis rotation, and r3 is x-axis rotation.

Supported rotation sequence strings are 'ZYX', 'ZYZ', 'ZXY', 'ZXZ',
'YXZ', 'YXY', 'YZX', 'YZY', 'XYZ', 'XYX', 'XZY', and 'XZX'.

Examples Determine the rotation angles from q = [1 0 1 0].

[yaw, pitch, roll] = quat2angle([1 0 1 0])
yaw =

0
pitch =

1.5708
roll =

0

4-277

quat2angle

Determine the rotation angles from multiple quaternions.

q = [1 0 1 0; 1 0.5 0.3 0.1];
[pitch, roll, yaw] = quat2angle(q, 'YXZ')

pitch =
1.5708
0.8073

roll =
0

0.7702
yaw =

0
0.5422

Assumptions
and
Limitations

The limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY'
implementations generate an r2 angle that lies between ±90 degrees,
and r1 and r3 angles that lie between ±180 degrees.

The limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX'
implementations generate an r2 angle that lies between 0 and 180
degrees, and r1 and r3 angles that lie between ±180 degrees.

See Also angle2dcm, angle2quat, dcm2angle, dcm2quat, quat2dcm

4-278

quat2dcm

Purpose Convert quaternion to direction cosine matrix

Syntax n = quat2dcm(q)

Description n = quat2dcm(q) calculates the direction cosine matrix, n, for a given
quaternion, q. Input q is an m-by-4 matrix containing m quaternions. n
returns a 3-by-3-by-m matrix of direction cosine matrices. The direction
cosine matrix performs the coordinate transformation of a vector in
inertial axes to a vector in body axes. Each element of q must be a real
number. Additionally, q has its scalar number as the first column.

Examples Determine the direction cosine matrix from q = [1 0 1 0]:

dcm = quat2dcm([1 0 1 0])

dcm =

0 0 -1.0000
0 1.0000 0

1.0000 0 0

Determine the direction cosine matrices from multiple quaternions:

q = [1 0 1 0; 1 0.5 0.3 0.1];
dcm = quat2dcm(q)

dcm(:,:,1) =

0 0 -1.0000
0 1.0000 0

1.0000 0 0

dcm(:,:,2) =

4-279

quat2dcm

0.8519 0.3704 -0.3704
0.0741 0.6148 0.7852
0.5185 -0.6963 0.4963

See Also angle2dcm, dcm2angle, dcm2quat, angle2quat, quat2angle,
quatrotate

4-280

quatconj

Purpose Calculate conjugate of quaternion

Syntax n = quatconj(q)

Description n = quatconj(q) calculates the conjugate, n, for a given quaternion,
q. Input q is an m-by-4 matrix containing m quaternions. n returns an
m-by-4 matrix of conjugates. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the conjugate of q = [1 0 1 0]:

conj = quatconj([1 0 1 0])

conj =

1 0 -1 0

See Also quatdivide, quatinv, quatmod, quatmultiply, quatnorm,
quatnormalize, quatrotate

4-281

quatdivide

Purpose Divide quaternion by another quaternion

Syntax n = quatdivide(q,r)

Description n = quatdivide(q,r) calculates the result of quaternion division, n,
for two given quaternions, q and r. Inputs q and r can each be either an
m-by-4 matrix containing m quaternions, or a single 1-by-4 quaternion.
n returns an m-by-4 matrix of quaternion quotients. Each element of q
and r must be a real number. Additionally, q and r have their scalar
number as the first column.

Examples Determine the division of two 1-by-4 quaternions:

q = [1 0 1 0];
r = [1 0.5 0.5 0.75];
d = quatdivide(q, r)

d =

0.7273 0.1212 0.2424 -0.6061

Determine the division of a 2-by-4 quaternion by a 1-by-4 quaternion:

q = [1 0 1 0; 2 1 0.1 0.1];
r = [1 0.5 0.5 0.75];
d = quatdivide(q, r)

d =

0.7273 0.1212 0.2424 -0.6061
1.2727 0.0121 -0.7758 -0.4606

See Also quatconj, quatinv, quatmod, quatmultiply, quatnorm,
quatnormalize, quatrotate

4-282

quatinv

Purpose Calculate inverse of quaternion

Syntax n = quatinv(q)

Description n = quatinv(q) calculates the inverse, n, for a given quaternion, q.
Input q is an m-by-4 matrix containing m quaternions. n returns an
m-by-4 matrix of inverses. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the inverse of q = [1 0 1 0]:

qinv = quatinv([1 0 1 0])

qinv =

0.5000 0 -0.5000 0

See Also quatconj, quatdivide, quatmod, quatmultiply, quatnorm,
quatnormalize, quatrotate

4-283

quatmod

Purpose Calculate modulus of quaternion

Syntax n = quatmod(q)

Description n = quatmod(q) calculates the modulus, n, for a given quaternion,
q. Input q is an m-by-4 matrix containing m quaternions. n returns a
column vector of m moduli. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the modulus of q = [1 0 0 0]:

mod = quatmod([1 0 0 0])

mod =

1

See Also quatconj, quatdivide, quatinv, quatmultiply, quatnorm,
quatnormalize, quatrotate

4-284

quatmultiply

Purpose Calculate product of two quaternions

Syntax n = quatmultiply(q,r)

Description n = quatmultiply(q,r) calculates the quaternion product, n, for two
given quaternions, q and r. Inputs q and r can each be either an
m-by-4 matrix containing m quaternions, or a single 1-by-4 quaternion.
n returns an m-by-4 matrix of quaternion products. Each element of q
and r must be a real number. Additionally, q and r have their scalar
number as the first column.

Note Quaternion multiplication is not commutative.

Examples Determine the product of two 1-by-4 quaternions:

q = [1 0 1 0];
r = [1 0.5 0.5 0.75];
mult = quatmultiply(q, r)

mult =

0.5000 1.2500 1.5000 0.2500

Determine the product of a 1-by-4 quaternion with itself:

q = [1 0 1 0];
mult = quatmultiply(q)

mult =

0 0 2 0

4-285

quatmultiply

Determine the product of 1-by-4 and 2-by-4 quaternions:

q = [1 0 1 0];
r = [1 0.5 0.5 0.75; 2 1 0.1 0.1];
mult = quatmultiply(q, r)

mult =

0.5000 1.2500 1.5000 0.2500
1.9000 1.1000 2.1000 -0.9000

See Also quatconj, quatdivide, quatinv, quatmod, quatnorm, quatnormalize,
quatrotate

4-286

quatnorm

Purpose Calculate norm of quaternion

Syntax n = quatnorm(q)

Description n = quatnorm(q) calculates the norm, n, for a given quaternion, q.
Input q is an m-by-4 matrix containing m quaternions. n returns a
column vector of m norms. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the norm of q = [1 0 0 0]:

norm = quatnorm([1 0 0 0])

norm =

1

See Also quatconj, quatdivide, quatinv, quatmod, quatmultiply,
quatnormalize, quatrotate

4-287

quatnormalize

Purpose Normalize quaternion

Syntax n = quatnormalize(q)

Description n = quatnormalize(q) calculates the normalized quaternion, n,
for a given quaternion, q. Input q is an m-by-4 matrix containing m
quaternions. n returns an m-by-4 matrix of normalized quaternions.
Each element of q must be a real number. Additionally, q has its scalar
number as the first column.

Examples Normalize q = [1 0 1 0]:

normal = quatnormalize([1 0 1 0])

normal =

0.7071 0 0.7071 0

See Also quatconj, quatdivide, quatinv, quatmod, quatmultiply, quatnorm,
quatrotate

4-288

quatrotate

Purpose Rotate vector by quaternion

Syntax n = quatrotate(q,r)

Description n = quatrotate(q,r) calculates the rotated vector, n, for a quaternion,
q, and a vector, r. q is either an m-by-4 matrix containing m quaternions,
or a single 1-by-4 quaternion. r is either an m-by-3 matrix, or a single
1-by-3 vector. n returns an m-by-3 matrix of rotated vectors. Each
element of q and r must be a real number. Additionally, q has its scalar
number as the first column.

Examples Rotate a 1-by-3 vector by a 1-by-4 quaternion:

q = [1 0 1 0];
r = [1 1 1];
n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000

Rotate a 1-by-3 vector by a 2-by-4 quaternion:

q = [1 0 1 0; 1 0.5 0.3 0.1];
r = [1 1 1];
n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000
0.8519 1.4741 0.3185

Rotate a 2-by-3 vector by a 1-by-4 quaternion:

q = [1 0 1 0];
r = [1 1 1; 2 3 4];

4-289

quatrotate

n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000
-4.0000 3.0000 2.0000

Rotate a 2-by-3 vector by a 2-by-4 quaternion:

q = [1 0 1 0; 1 0.5 0.3 0.1];
r = [1 1 1; 2 3 4];
n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000
1.3333 5.1333 0.9333

See Also quatconj, quatinv, quatmod, quatmultiply, quatnorm, quatnormalize

4-290

read (Aero.Geometry)

Purpose Read geometry data using current reader

Syntax read(h, source)

Description read(h, source) reads the geometry data of the geometry object h.
source can be:

• 'Auto'

Selects default reader.

• 'Variable'

Selects MATLAB variable of type structure structures that contains
the fieldsname, faces, vertices, and cdata that define the geometry
in the Handle Graphics patches.

• 'MatFile'

Selects MAT-file reader.

• 'Ac3dFile'

Selects Ac3d file reader.

• 'Custom'

Selects a custom reader.

Examples Read geometry data from Ac3d file, pa24-250_orange.ac.

g = Aero.Geometry;
g.Source = 'Ac3d';
g.read('pa24-250_orange.ac');

4-291

Aero.Animation.removeBody

Purpose Remove one body from animation

Syntax h = removeBody(h,idx)
h = h.removeBody(idx)

Description h = removeBody(h,idx) and h = h.removeBody(idx) remove the
body specified by the index idx from the animation object h.

Input
Arguments

h Animation object.

idx Body specified with this index.

Examples Remove the body identified by the index, 1.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
h = removeBody(h,1)

4-292

removeNode (Aero.VirtualRealityAnimation)

Purpose Remove node from virtual reality animation object

Syntax removeNode(h,node)
h.removeNode(node)

Description removeNode(h,node) and h.removeNode(node) remove the node
specified by node from the virtual reality animation object h. node can
be either the node name or the node index. This function can remove
only one node at a time.

Note You can use only this function to remove a node added by
addNode. If you need to remove a node from a previously defined .wrl
file, use a VRML editor.

Examples Remove the node, Lynx1.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

h.addNode('Lynx1',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);

h.removeNode('Lynx1');

See Also addNode

4-293

removeViewpoint (Aero.VirtualRealityAnimation)

Purpose Remove viewpoint node from virtual reality animation

Syntax removeViewpoint(h,viewpoint)
h.removeViewpoint(viewpoint)

Description removeViewpoint(h,viewpoint) and h.removeViewpoint(viewpoint)
remove the viewpoint specified by viewpoint from the virtual reality
animation object h. viewpoint can be either the viewpoint name or the
viewpoint index. This function can remove only one viewpoint at a time.

Note You can use this function to remove a viewpoint added by
addViewpoint. If you need to remove a viewpoint from a previously
defined .wrl file, use a VRML editor.

Examples Remove the node, Lynx1.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

h.addViewpoint(h.Nodes{2}.VRNode,'children','chaseView','View From Helicopter');

h.removeViewpoint('chaseView');

See Also addViewpoint

4-294

rrdelta

Purpose Compute relative pressure ratio

Syntax d = rrdelta(p0, mach, g)

Description d = rrdelta(p0, mach, g) computes m pressure relative ratios, d,
from m static pressures, p0, m Mach numbers, mach, and m specific heat
ratios, g. p0 must be in pascals.

Examples Determine the relative pressure ratio for three pressures:

delta = rrdelta([101325 22632.0672 4328.1393], 0.5, 1.4)

delta =

1.1862 0.2650 0.0507

Determine the relative pressure ratio for three pressures and three
different heat ratios:

delta = rrdelta([101325 22632.0672 4328.1393], 0.5, [1.4 1.35 1.4])

delta =

1.1862 0.2635 0.0507

Determine the relative pressure ratio for three pressures at three
different conditions:

delta = rrdelta([101325 22632.0672 4328.1393], [0.5 1 2], [1.4 1.35 1.4])

delta =

1.1862 0.4161 0.3342

4-295

rrdelta

Assumptions
and
Limitations

For cases in which total pressure ratio is desired (Mach number is
nonzero), the total pressures are calculated assuming perfect gas
(with constant molecular weight, constant pressure specific heat, and
constant specific heat ratio) and dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986

See Also rrsigma, rrtheta

4-296

rrsigma

Purpose Compute relative density ratio

Syntax s = rrsigma(rho, mach, g)

Description s = rrsigma(rho, mach, g) computes m density relative ratios, s,
from m static densities, rho, m Mach numbers, mach, and m specific heat
ratios, g. rho must be in kilograms per meter cubed.

Examples Determine the relative density ratio for three densities:

sigma = rrsigma([1.225 0.3639 0.0953], 0.5, 1.4)

sigma =

1.1297 0.3356 0.0879

Determine the relative density ratio for three densities and three
different heat ratios:

sigma = rrsigma([1.225 0.3639 0.0953], 0.5, [1.4 1.35 1.4])

sigma =

1.1297 0.3357 0.0879

Determine the relative density ratio for three densities at three
different conditions:

sigma = rrsigma([1.225 0.3639 0.0953], [0.5 1 2], [1.4 1.35 1.4])

sigma =

1.1297 0.4709 0.3382

4-297

rrsigma

Assumptions
and
Limitations

For cases in which total density ratio is desired (Mach number is
nonzero), the total density is calculated assuming perfect gas (with
constant molecular weight, constant pressure specific heat, and
constant specific heat ratio) and dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986

See Also rrdelta, rrtheta

4-298

rrtheta

Purpose Compute relative temperature ratio

Syntax th = rrtheta(t0, mach, g)

Description th = rrtheta(t0, mach, g) computes m temperature relative ratios,
th, from m static temperatures, t0, mMach numbers, mach, and m specific
heat ratios, g. t0 must be in kelvin.

Examples Determine the relative temperature ratio for three temperatures:

th = rrtheta([273.15 310.9278 373.15], 0.5, 1.4)

th =

0.9953 1.1330 1.3597

Determine the relative temperature ratio for three temperatures and
three different heat ratios:

th = rrtheta([273.15 310.9278 373.15], 0.5, [1.4 1.35 1.4])

th =

0.9953 1.1263 1.3597

Determine the relative temperature ratio for three temperatures at
three different conditions:

th = rrtheta([273.15 310.9278 373.15], [0.5 1 2], [1.4 1.35 1.4])

th =

0.9953 1.2679 2.3310

4-299

rrtheta

Assumptions
and
Limitations

For cases in which total temperature ratio is desired (Mach number
is nonzero), the total temperature is calculated assuming perfect gas
(with constant molecular weight, constant pressure specific heat, and
constant specific heat ratio) and dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986

See Also rrdelta, rrsigma

4-300

saveas (Aero.VirtualRealityAnimation)

Purpose Save virtual reality world associated with virtual reality animation
object

Syntax saveas(h, filename)
h.saveas(filename)

Description saveas(h, filename) and h.saveas(filename) save the world
associated with the virtual reality animation object, h, into the .wrl file
name specified in the filename variable. After saving, this function
reinitializes the virtual reality animation object from the saved world.

Examples Save the world associated with h.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,asttkoff.wrl'];

h.initialize();

h.saveas([tempdir,'my_asttkoff.wrl']);

4-301

SetTimer (Aero.FlightGearAnimation)

Purpose Set name of timer for animation of FlightGear flight simulator

Syntax SetTimer(h)
h.SetTimer
SetTimer(h, MyFGTimer)
h.SetTimer('MyFGTimer')

Description SetTimer(h) and h.SetTimer set the name of the MATLAB timer
for the animation of the FlightGear flight simulator. SetTimer(h,
MyFGTimer) and h.SetTimer('MyFGTimer') set the name of the
MATLAB timer for the animation of the FlightGear flight simulator
and assign a custom name to the timer.

You can use this function to customize your FlightGear animation
object. This customization allows you to simultaneously run multiple
FlightGear objects if you want to use

• Multiple FlightGear sessions

• Different ports to connect to those sessions

Examples Set the MATLAB timer for animation of the FlightGear animation
object, h:

h = Aero.FlightGearAnimation
h.SetTimer

Set the MATLAB timer used for animation of the FlightGear animation
object, h, and assign a custom name, MyFGTimer, to the timer:

h = Aero.FlightGearAnimation
h.SetTimer('MyFGTimer')

See Also ClearTimer

4-302

Aero.Animation.show

Purpose Show animation object figure

Syntax show(h)
h.show

Description show(h) and h.show create the figure graphics object for the animation
object h. Use the Aero.Animation.hide function to close the figure.

Input
Arguments

h Animation object.

Examples Show the animation object, h.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
h.show;

4-303

update (Aero.Body)

Purpose Change body position and orientation as function of time

Syntax update(h,t)
h.update(t)

Description update(h,t) and h.update(t) change body position and orientation of
body h as a function of time t. t is a scalar in seconds.

Note This function requires that you load the body geometry and time
series data first.

Examples Update the body b with time in seconds of 5.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d');
tsdata = [...

0, 1,1,1, 0,0,0; ...
10 2,2,2, 1,1,1;];

b.TimeSeriesSource = tsdata;
b.update(5);

See Also load

4-304

update (Aero.Camera)

Purpose Update camera position based on time and position of other Aero.Body
objects

Syntax update(h,newtime,bodies)
h.update(newtime,bodies)

Description update(h,newtime,bodies) and h.update(newtime,bodies) update
the camera object, h, position and aim point data based on the new time,
newtime, and position of other Aero.Body objects, bodies. This function
updates the camera object PrevTime property to newtime.

See Also Aero.Animation.play

4-305

update (Aero.FlightGearAnimation)

Purpose Update position data to FlightGear animation object

Syntax update(h,time)
h.update(time)

Description update(h,time) and h.update(time) update the position data to the
FlightGear animation object via UDP. It sets the new position and
attitude of body h. time is a scalar in seconds.

Note This function requires that you load the time series data and
run FlightGear first.

Examples Configure a body with TimeSeriesSource set to simdata, then update
the body with time time equal to 0.

h = Aero.FlightGearAnimation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
load simdata;
h.TimeSeriesSource = simdata;
t = 0;
h.update(t);

See Also GenerateRunScript, initialize, play

4-306

update (Aero.Node)

Purpose Change node position and orientation versus time data

Syntax update(h,t)
h.update(t)

Description update(h,t) and h.update(t) change node position and orientation of
node h as a function of time t. t is a scalar in seconds.

Note This function requires that you load the node and time series
data first.

Examples Move the Lynx body.

h = Aero.VirtualRealityAnimation;

h.FramesPerSecond = 10;

h.TimeScaling = 5;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

load takeoffData

h.Nodes{7}.TimeseriesSource = takeoffData;

h.Nodes{7}.TimeseriesSourceType = 'StructureWithTime';

h.Nodes{7}.update(5);

See Also updateNodes

4-307

Aero.Animation.updateBodies

Purpose Update bodies of animation object

Syntax h = updateBodies(time)
h.updateBodies(time)

Description h = updateBodies(time) and h.updateBodies(time) set the new
position and attitude of movable bodies in the animation object h. This
function updates the bodies contained in the animation object h. time
is a scalar in seconds.

Examples Configure a body with TimeSeriesSource set to simdata, then update
the body with time t equal to 0.

h = Aero.Animation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
load simdata;
h.Bodies{1}.TimeSeriesSource = simdata;
t = 0;
h.updateBodies(t);

4-308

Aero.Animation.updateCamera

Purpose Update camera in animation object

Syntax updateCamera(h,time)
h.updateCamera(time)

Description updateCamera(h,time) and h.updateCamera(time) update the camera
in the animation object h. time is a scalar in seconds.

Note The PositionFcn property of a camera object controls the camera
position relative to the bodies in the animation. The default camera
PositionFcn follows the path of a first order chase vehicle. Therefore,
it takes a few steps for the camera to position itself correctly in the
chase plane position.

Input
Arguments

h Animation object.

time Scalar in seconds.

Examples Configure a body with TimeSeriesSource set to simdata, then update
the camera with time t equal to 0.

h = Aero.Animation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
load simdata;
h.Bodies{1}.TimeSeriesSource = simdata;
t = 0;
h.updateCamera(t);

4-309

updateNodes (Aero.VirtualRealityAnimation)

Purpose Change virtual reality animation node position and orientation as
function of time

Syntax updateNodes(h,t)
h.updateNotes(t)

Description updateNodes(h,t) and h.updateNotes(t) change node position and
orientation of body h as a function of time t. t is a scalar in seconds.

Note This function requires that you load the node and time series
data first.

Examples Update the node h with time in 5 seconds.

h = Aero.VirtualRealityAnimation;

h.FramesPerSecond = 10;

h.TimeScaling = 5;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

load takeoffData

h.Nodes{7}.TimeseriesSource = takeoffData;

h.Nodes{7}.TimeseriesSourceType = 'StructureWithTime';

h.Nodes{7}.CoordTransformFcn = @vranimCustomTransform;

h.updateNodes(5);

See Also addNode, update

4-310

Viewpoint (Aero.Viewpoint)

Purpose Create viewpoint object for use in virtual reality animation

Syntax h = Aero.Viewpoint

Description h = Aero.Viewpoint creates a viewpoint object for use with virtual
reality animation.

See Aero.Viewpoint for further details.

4-311

VirtualRealityAnimation (Aero.VirtualRealityAnimation)

Purpose Construct virtual reality animation object

Syntax h = Aero.VirtualRealityAnimation

Description h = Aero.VirtualRealityAnimation constructs a virtual reality
animation object. The animation object is returned to h.

See Aero.VirtualRealityAnimation for further details.

See Also Aero.VirtualRealityAnimation

4-312

wrldmagm

Purpose Use World Magnetic Model

Syntax [xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear)
[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,

'2010')
[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,

'2005')
[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,

'2000')

Description [xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear)
calculates the Earth’s magnetic field at a specific location and time using
the World Magnetic Model (WMM). The default WMM is WMM-2010,
which is valid from January 1, 2010, until December 31, 2014.

Inputs required by wrldmagm are:

height A scalar value, in meters

lat A scalar geodetic latitude, in degrees, where
north latitude is positive, and south latitude
is negative

lon A scalar geodetic longitude, in degrees, where
east longitude is positive, and west longitude
is negative

dyear A scalar decimal year. Decimal year is the
desired year in a decimal format to include any
fraction of the year that has already passed.

Outputs calculated for the Earth’s magnetic field include:

xyz Magnetic field vector in nanotesla (nT)

h Horizontal intensity in nanotesla (nT)

dec Declination in degrees

4-313

wrldmagm

dip Inclination in degrees

f Total intensity in nanotesla (nT)

[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,
'2010') is an alternate method for calling WMM-2010, or 2010 epoch.

[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,
'2005') is an alternate method for calling WMM-2005, or 2005 epoch.

[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,
'2000') is the method for calling WMM-2000, or 2000 epoch.

Examples Calculate the magnetic model 1000 meters over Natick, Massachusetts
on July 4, 2005, using WMM-2005:

[XYZ, H, DEC, DIP, F] = wrldmagm(1000, 42.283, -71.35, 2005.5068, '2005')

XYZ =

1.0e+004 *

1.8976

-0.5167

4.9555

H =

1.9667e+004

DEC =

-15.2324

4-314

wrldmagm

DIP =

68.3530

F =

5.3315e+004

Assumptions
and
Limitations

The WMM specification produces data that is reliable five years after
the epoch of the model, which begins January 1 of the model year
selected. The WMM specification describes only the long-wavelength
spatial magnetic fluctuations due to the Earth’s core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the
mantle and crust), are not included. Also, the substantial fluctuations
of the geomagnetic field, which occur constantly during magnetic
storms and almost constantly in the disturbance field (auroral zones),
are not included.

References http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

“NOAA Technical Report: The US/UK World Magnetic Model for
2005–2010”

See Also decyear

4-315

http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

Aero.Animation.Bodies property

Purpose Specify name of animation object

Values MATLAB array

Default: []

Description This property specifies the bodies that the animation object contains.

4-316

Aero.Animation.Camera property

Purpose Specify camera that animation object contains

Values handle

Default: []

Description This property specifies the camera that the animation object contains.

4-317

Aero.Animation.Figure property

Purpose Specify name of figure object

Values MATLAB array

Default: []

Description This property specifies the name of the figure object.

4-318

Aero.Animation.FigureCustomizationFcn property

Purpose Specify figure customization function

Values MATLAB array

Default: []

Description This property specifies the figure customization function.

4-319

Aero.Animation.FramesPerSecond property

Purpose Animation rate

Values MATLAB array

Default: 12

Description This property specifies rate in frames per second.

4-320

Aero.Animation.Name property

Purpose Specify name of animation object

Values String

Default: ' '

Description This property specifies the name of the animation object.

4-321

Aero.Animation.TCurrent property

Purpose Current time

Values double

Default: 0

Description This property specifies the current time.

4-322

Aero.Animation.TFinal property

Purpose End time

Values double

Default: NaN

Description This property specifies the end time.

4-323

Aero.Animation.TimeScaling property

Purpose Scaling time

Values double

Default: 1

Description This property specifies the time, in seconds.

4-324

Aero.Animation.TStart property

Purpose Start time

Values double

Default: NaN

Description This property specifies the start time.

4-325

Aero.Animation.TStart

4-326

A

AC3D Files and Thumbnails

A AC3D Files and Thumbnails

Overview
Aerospace Toolbox demos use the following AC3D files, located in the
matlabroot\toolbox\aero\astdemos folder. For other AC3D files, see
http://www.flightgear.org/Downloads/ and click the Download Aircraft
link.

Thumbnail AC3D File

ac3d_xyzisrgb.ac

blueoctagon.ac

bluewedge.ac

body_xyzisrgb.ac

delta2.ac

greenarrow.ac

pa24 250_blue.ac

pa24 250_orange.ac

A-2

http://www.flightgear.org/Downloads/

Overview

Thumbnail AC3D File

redwedge.ac

testrocket.ac

A-3

A AC3D Files and Thumbnails

A-4

Index

IndexA
AC3D files A-2
addBody (Aero.Animation) function 4-2
addNode (Aero.VirtualRealityAnimation)

function 4-3
addRoute (Aero.VirtualRealityAnimation)

function 4-4
addViewpoint

(Aero.VirtualRealityAnimation)
function 4-5

Aero.Animation
demo 2-27
flight simulator overview 2-26
introducing 2-26

Aero.Animation object 4-9
Aero.Body object 4-10
Aero.Camera object 4-14
Aero.FlightGearAnimation

demo 2-55
introducing 2-26

Aero.FlightGearAnimation object 4-16
Aero.Geometry object 4-20
Aero.Node object 4-22
Aero.Viewpoint function 4-25
Aero.VirtualRealityAnimation

demo 2-36
flight simulator overview 2-35
introducing 2-26
virtual world 2-37

Aero.VirtualRealityAnimation object 4-26
Aerospace Toolbox

3-D flight data playback 2-26
about 1-2
AC3D files A-2
animation objects 2-26
coordinate systems 2-2
flight data file access 2-14
online help 1-5
related products 1-4

aerospace units

definition 2-12
airspeed function 4-30
alphabeta function 4-31
angle2dcm function 4-33
angle2quat function 4-36
animation objects

introducing 2-26
atmoscira function 4-41
atmoscoesa function 4-38
atmosisa function 4-48
atmoslapse function 4-51
atmosnonstd function 4-54
atmosnrlmsise00 function 4-60
atmospalt function 4-72

B
Bodies

properties 4-316
Body (Aero.Body) function 4-74
body coordinates 2-4

C
Camera

properties 4-317
Camera (Aero.Camera) function 4-75
ClearTimer(Aero.FlightGearAnimation)

function 4-76
convacc function 4-77
convang function 4-79
convangacc function 4-81
convangvel function 4-83
convdensity function 4-85
convforce function 4-87
convlength function 4-89
convmass function 4-91
convpres function 4-93
convtemp function 4-95
convvel function 4-97

Index-1

Index

coordinate systems 2-2
approximations 2-3
body coordinates 2-4
definition 2-2
display 2-10
Earth-centered coordinates 2-9
ECEF coordinates 2-10
ECI coordinates 2-9
geocentric and geodetic latitudes 2-7
modeling 2-4
motion with respect to other planets 2-3
navigation 2-7
NED coordinates 2-8
references 2-11
rotational degrees of freedom 2-4 2-6
translational degrees of freedom 2-4 to 2-5
wind coordinates 2-5

correctairspeed function 4-99
createBody (Aero.Animation) function 4-102

D
datcomimport function 4-104
dcm2alphabeta function 4-147
dcm2angle function 4-149
dcm2latlon function 4-152
dcm2quat function 4-154
dcmbody2wind function 4-155
dcmecef2ned function 4-157
decyear function 4-159
delete (Aero.Animation) function 4-161
delete (Aero.FlightGearAnimation)

function 4-162
delete (Aero.VirtualRealityAnimation)

function 4-163
demos

AC3D files A-2
astfganim 2-48
astimportddatcom 2-14
astmlanim 2-26

astvranim 2-35
type astdatcom.in 2-14

digital DATCOM
examining 2-15
importing 2-14
overview 2-14
plotting aerodynamic coefficients 2-22

digital DATCOM file
example 2-14
importing data 2-15

dpressure function 4-164

E
Earth-centered coordinates 2-9
ECEF coordinates 2-10
ecef2lla function 4-166
ECI coordinates 2-9

F
fganimation (Aero.FlightGearAnimation)

function 4-168
Figure

properties 4-318
FigureCustomizationFcn

properties 4-319
findstartstoptimes (Aero.Body)

function 4-169
findstartstoptimes (Aero.Node)

function 4-170
FlightGear

flight simulator overview 2-48
installing 2-52
obtaining 2-49

flowfanno function 4-171
flowisentropic function 4-177
flownormalshock function 4-182
flowprandtlmeyer function 4-188
flowrayleigh function 4-192

Index-2

Index

FramesPerSecond
properties 4-320

functions
addBody (Aero.Animation) 4-2
addNode

(Aero.VirtualRealityAnimation) 4-3
AddRoute

(Aero.VirtualRealityAnimation) 4-4
addViewpoint(Aero.VirtualRealityAnimation) 4-5
Aero.Viewpoint 4-25
airspeed 4-30
alphabeta 4-31
angle2dcm 4-33
angle2quat 4-36
atmoscira 4-41
atmoscoesa 4-38
atmosisa 4-48
atmoslapse 4-51
atmosnonstd 4-54
atmosnrlmsise00 4-60
atmospalt 4-72
Body (Aero.Body) 4-74
Camera (Aero.Camera) 4-75
ClearTimer(Aero.FlightGearAnimation) 4-76
convacc 4-77
convang 4-79
convangacc 4-81
convangvel 4-83
convdensity 4-85
convforce 4-87
convlength 4-89
convmass 4-91
convpres 4-93
convtemp 4-95
convvel 4-97
correctairspeed 4-99
createBody (Aero.Animation) 4-102
datcomimport 4-104
dcm2alphabeta 4-147
dcm2angle 4-149

dcm2latlon 4-152
dcm2quat 4-154
dcmbody2wind 4-155
dcmecef2ned 4-157
decyear 4-159
delete (Aero.Animation) 4-161
delete

(Aero.FlightGearAnimation) 4-162
delete

(Aero.VirtualRealityAnimation) 4-163
dpressure 4-164
ecef2lla 4-166
fganimation

(Aero.FlightGearAnimation) 4-168
findstartstoptimes (Aero.Body) 4-169
findstartstoptimes (Aero.Node) 4-170
flowfanno 4-171
flowisentropic 4-177
flownormalshock 4-182
flowprandtlmeyer 4-188
flowrayleigh 4-192
generatePatches (Aero.Body) 4-199
GenerateRunScript

(Aero.FlightGearAnimation) 4-200
geoc2geod 4-202
geocradius 4-205
geod2geoc 4-207
geoidegm96 4-209
geoidheight 4-212
gravitycentrifugal 4-218
gravitysphericalharmonic 4-221
gravitywgs84 4-228
gravityzonal 4-236
hide (Aero.Animation) 4-243
initialize (Aero.Animation) 4-244
initialize

(Aero.FlightGearAnimation) 4-245
initialize

(Aero.VirtualRealityAnimation) 4-246
initIfNeeded (Aero.Animation) 4-247

Index-3

Index

juliandate 4-248
leapyear 4-250
lla2ecef 4-251
load (Aero.Body) 4-253
machnumber 4-255
mjuliandate 4-257
move (Aero.Body) 4-260
move (Aero.Node) 4-261
moveBody (Aero.Animation) 4-263
Node (Aero.Node) 4-264
nodeInfo

(Aero.VirtualRealityAnimation) 4-265
play (Aero.Animation) 4-266
play (Aero.FlightGearAnimation) 4-270
play

(Aero.VirtualRealityAnimation) 4-274
quat2angle 4-277
quat2dcm 4-279
quatconj 4-281
quatdivide 4-282
quatinv 4-283
quatmod 4-284
quatmultiply 4-285
quatnorm 4-287
quatnormalize 4-288
quatrotate 4-289
read (Aero.Geometry) 4-291
removeBody (Aero.Animation) 4-292
removeNode

(Aero.VirtualRealityAnimation) 4-293
removeViewpoint

(Aero.VirtualRealityAnimation) 4-294
rrdelta 4-295
rrsigma 4-297
rrtheta 4-299
saveas

(Aero.VirtualRealityAnimation) 4-301
SetTimer(Aero.FlightGearAnimation) 4-302
show (Aero.Animation) 4-303
update (Aero.Body) 4-304

update (Aero.Camera) 4-305
update

(Aero.FlightGearAnimation) 4-306
update (Aero.Node) 4-307
updateBodies (Aero.Animation) 4-308
updateCamera (Aero.Animation) 4-309
updateNodes

(Aero.VirtualRealityAnimation) 4-310
Viewpoint (Aero.Viewpoint) 4-311
VirtualRealityAnimation

(Aero.VirtualRealityAnimation) 4-312
wrldmagm 4-313

G
generatePatches (Aero.Body) function 4-199
GenerateRunScript

(Aero.FlightGearAnimation)
function 4-200

geoc2geod function 4-202
geocentric and geodetic latitudes 2-7
geocradius function 4-205
geod2geoc function 4-207
geoidegm96 function 4-209
geoidheight function 4-212
Geometry (Aero.Geometry) object 4-217
gravitycentrifugal function 4-218
gravitysphericalharmonic function 4-221
gravitywgs84 function 4-228
gravityzonal function 4-236

H
hide (Aero.Animation) function 4-243

I
importing

digital DATCOM data 2-14
initialize (Aero.Animation) function 4-244

Index-4

Index

initialize (Aero.FlightGearAnimation)
function 4-245

initialize (Aero.VirtualRealityAnimation)
function 4-246

initIfNeeded (Aero.Animation)
function 4-247

J
juliandate function 4-248

L
leapyear function 4-250
lla2ecef function 4-251
load (Aero.Body) function 4-253

M
machnumber function 4-255
mjuliandate function 4-257
modeling 2-4
move (Aero.Body) function 4-260
move (Aero.Node) function 4-261
moveBody (Aero.Animation) function 4-263

N
Name

properties 4-321
navigation 2-7
NED coordinates 2-8
Node (Aero.Node) function 4-264
nodeInfo (Aero.VirtualRealityAnimation)

function 4-265

O
objects

Aero.Animation 4-9
Aero.Body 4-10

Aero.Camera 4-14
Aero.FlightGearAnimation 4-16
Aero.Geometry 4-20
Aero.Node 4-22
Aero.VirtualRealityAnimation 4-26
Geometry (Aero.Geometry) 4-217

online help 1-5

P
play (Aero.Animation) function 4-266
play (Aero.FlightGearAnimation)

function 4-270
play (Aero.VirtualRealityAnimation)

function 4-274
properties

Bodies 4-316
Camera 4-317
Figure 4-318
FigureCustomizationFcn 4-319
FramesPerSecond 4-320
Name 4-321
TCurrent 4-322
TFinal 4-323
TimeScaling 4-324
TStart 4-325

Q
quat2angle function 4-277
quat2dcm function 4-279
quatconj function 4-281
quatdivide function 4-282
quatinv function 4-283
quatmod function 4-284
quatmultiply function 4-285
quatnorm function 4-287
quatnormalize function 4-288
quatrotate function 4-289

Index-5

Index

R
read (Aero.Geometry) function 4-291
removeBody (Aero.Animation) function 4-292
removeNode (Aero.VirtualRealityAnimation)

function 4-293
removeViewpoint

(Aero.VirtualRealityAnimation)
function 4-294

rotational degrees of freedom 2-4 2-6
rrdelta function 4-295
rrsigma function 4-297
rrtheta function 4-299

S
saveas (Aero.VirtualRealityAnimation)

function 4-301
SetTimer(Aero.FlightGearAnimation)

function 4-302
show (Aero.Animation) function 4-303

T
TCurrent

properties 4-322
TFinal

properties 4-323
TimeScaling

properties 4-324
translational degrees of freedom 2-4 to 2-5

TStart
properties 4-325

U
update (Aero.Body) function 4-304
update (Aero.Camera) function 4-305
update (Aero.FlightGearAnimation)

function 4-306
update (Aero.Node) function 4-307
updateBodies (Aero.Animation)

function 4-308
updateCamera (Aero.Animation)

function 4-309
updateNodes

(Aero.VirtualRealityAnimation)
function 4-310

V
Viewpoint (Aero.Viewpoint) function 4-311
virtual world 2-37
VirtualRealityAnimation

(Aero.VirtualRealityAnimation)
function 4-312

W
wind coordinates 2-5
wrldmagm function 4-313

Index-6

	toc
	Getting Started
	Product Overview
	Related Products
	Getting Online Help
	Exploring the Toolbox
	Using the MATLAB Help System for Documentation and Demos

	Using Aerospace Toolbox
	Defining Coordinate Systems
	Fundamental Coordinate System Concepts
	Definitions
	Approximations
	Motion with Respect to Other Planets

	Coordinate Systems for Modeling
	Body Coordinates
	Wind Coordinates

	Coordinate Systems for Navigation
	Geocentric and Geodetic Latitudes
	NED Coordinates
	ECI Coordinates
	ECEF Coordinates

	Coordinate Systems for Display
	References

	Defining Aerospace Units
	Importing Digital DATCOM Data
	Overview
	Example of a USAF Digital DATCOM File
	Importing Data from DATCOM Files
	Examining Imported DATCOM Data
	Filling in Missing DATCOM Data
	Plotting Aerodynamic Coefficients
	Plotting Lift Curve Moments
	Plotting Drag Polar Moments
	Plotting Pitching Moments

	3-D Flight Data Playback
	Aerospace Toolbox Animation Objects
	Using Aero.Animation Objects
	Running the Demo
	Creating and Configuring an Animation Object
	Loading Recorded Data for Flight Trajectories
	Displaying Body Geometries in a Figure Window
	Playing Back Flight Trajectories Using the Animation Object
	Manipulating the Camera
	Manipulating Bodies

	Using Aero.VirtualRealityAnimation Objects
	Running the Demo
	Creating and Configuring a Virtual Reality Animation Object
	Enabling Aero.VirtualRealityAnimation Methods to Track Changes t
	Loading the Animation World
	Displaying Figures
	Loading Time Series Data for Simulation
	Aligning the Position and Rotation Data with Surrounding Virtual
	Viewing the Nodes in a Virtual Reality Animation Object
	Adding a Chase Helicopter
	Loading Time Series Data for Simulation
	Aligning the Chase Helicopter Position and Rotation Data with Su
	Adding a New Viewpoint
	Playing Back the Simulation
	Adding a Route to the Camera1 Node
	Adding Another Helicopter and Viewing All Bodies Simultaneously
	Removing Bodies
	Reverting to the Original World
	Closing and Deleting Worlds

	Using Aero.FlightGearAnimation Objects
	About the FlightGear Interface
	Configuring Your Computer for FlightGear
	Installing and Starting FlightGear
	Working with the Flight Simulator Interface
	Running the Demo

	Function Reference
	Animation Objects
	Body Objects
	Camera Objects
	FlightGear Objects
	Geometry Objects
	Node Objects
	Viewpoint Objects
	Virtual Reality Objects
	Axes Transformations
	Environment
	File Reading
	Flight Parameters
	Gas Dynamics
	Quaternion Math
	Time
	Unit Conversion

	Alphabetical List
	AC3D Files and Thumbnails
	Overview

	Index

	tables
	Common Fields for the 1976 Version (File Type 6)
	Static Longitude and Lateral Stability Fields Available for the
	Dynamic Derivative Fields for the 1976 Version (File Type 6)
	High-Lift and Control Fields for Symmetric Flaps for the 1976 Ve
	High-Lift and Control Fields Available for Asymmetric Flaps for
	High-Lift and Control Fields Available for Control/Trim Tabs for
	High-Lift and Control Fields Available for Trim for the 1976 Ver
	Transverse Jet Control Fields for the 1976 Version (File Type 6)
	Hypersonic Fields for the 1976 Version (File Type 6)
	Auxiliary and Partial Fields Available for the 1976 Version (Fil
	Common Fields for the 1999 Version (File Type 6)
	Static Longitude and Lateral Stability Fields Available for the
	Dynamic Derivative Fields for the 1999 Version (File Type 6)
	Common Fields for the 2007 and 2008 Version (File Type 6)
	Static Longitude and Lateral Stability Fields Available for the
	Dynamic Derivative Fields for the 2007 and 2008 Version (File Ty
	Common Fields for the 2007 and 2008 Version (File Type 21)
	Static Longitude and Lateral Stability Fields Available for the
	Dynamic Derivative Fields for the 2007 and 2008 Version (File Ty
	Fields for the 2008 Version (File Type 42)
	Static Longitude and Lateral Stability Fields Available for the
	Dynamic Derivative Fields for the 2008 Version (File Type 42)

